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§ 1. Introduction

Let M be an n-dimensional differentiable manifold of class C= and let (x', y')
be the canonical coordinates of a point y€T(M), where T(M) is the tangent
bundle of M [7] and let = be the canonical projection. The natural basis of 7'(M)
with respect to canonical coordinates is [—;;, 7617 , and the mapping N: ye T(M)—~
~+NyeT(M), is a regular distribution on T(M), such that: T(M),=Nya T(M)}.

e O k_ . - - - . .
Let = 9 N; e be a local basis of the n dimensional local distribution

N, where Nji(x,y) are the coefficients of the non-linear connection defined by N.
The notions and notations of M. MATsumoToO [6] and R. MIRON [7] are used.

Let FI'=(N, F,C) be a Finsler connection with the coefficients (N}, F, hes Ch),
T the group of general Finsler connection transformations #: (N, F,C)—~(N, F, é)
and Jy={t|tc T, t=1(0, B, D)} the subgroup of 7, formed by the transforma-
tions r: (N, F,C)—~(N, F, C), which preserve the non-linear connection N. The
transformations from 7y have the form:

(l.l) ﬁj - N}; F}g - F}R—B}k; C}k - C;k_Dj'lc

where B, DcZ}(M) are arbitrary Finsler tensor fields [7]. In the following we
denote by |, | and |, || the h-and v-covariant derivatives relative to (N, F,C) and
(N, F, C) respectively.

Let g=(g;;) be a metrical Finsler structure subordinated to a Finsler space
F,=(M, L) [7], the corresponding metrical Finsler connection transformations were
are studied by R. Miron [7], [8] and M. HasuiGucHi [3], [8]. All 7€ 7 transformations
contain terms of the general form QX, QY, where Q is the Obata operator [7] and
X, YeZ}(M) are arbitrary Finsler tensors. By 2*) we denote the second Obata
operator.

In the following we insert the 7€ 7 transformations in a more comprehensive
class of transformations, called g-transformations, where the terms QX, QY are

*) Presented on a scientific meeting at Debrecen University in September 1985.
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explicited by given. These classes of Finsler transformations contain also the con-
formal Finsler transformations [1], [2], [9]. The obtained results lead easy to the
determination of special classes of classical Finsler connections and to their special
invariants.

§ 2. The class of Finsler g-transformations

Definition 2.1. Let FI' =(N, F, C) be an arbitrary fixed Finsler connection and
let 1€¢7, t: FI'=(N, F,C)—~FI'=(N,F, C) be a general Finsler connection trans-
formation; if

2.1) Guk o« 8ijlk and  giu = 8ijlk

are invariants of the iransformation t, then 7 is called a g-transformation and is
denoted by 7g. If N=N it follows €7 and the transformation ¢ is denoted by 7y g.

Definition 2.2. If G;;; and g;; are not invariants of the transformation €7,
then 7 is called a non-g-transformation.

Theorem 2.1. A necessary and sufficient condition that t€ 7y be a g-transforma-
tion is that the transformation t has the form:

(2.2) t=Ni, Fy = Fi+ T -Ti; Cii = Ci+ 85 —-Sk

where T}, is the h-torsion tensor of the connection FI', S }k is the v-torsion tensor of
FI, T,ScX} are arbitrary skewsymmetric tensors: T'y=—Ti;; Sjy=—S8;; and
S W RPC S* are Finsler tensors of the form:

(2.3) 2T = Tj+ 88" Tir + 88" T}
2.4) 23,, = Sh+ 88" Sh+ g,kg" 5
(2.5) = Th+2,8" T+ gag”
(2.6) 287 = S+ g,;8" Sie+ ga 8"

PROOF. We suppose that 7€y is of the form (2.2). Evaluating the A- and
v-covariant derivatives of g;; relative to FTI', we obtain:

(2.7 ijik = Buis 8ujlle = 8uyle
ie. G:‘jk = Gijs ijk = 8ijk-

It means that zy=tyg.
Inversely, let 7y€7y the most general Finsler connection transformation

(2.8) Nj = Nj; Fjy = Fju+Bjy; Cii = Cju+Dii

given in [7], where B, D€Z}(M) are arbitrary Finsler tensors.
We have:

(2.9) 8ijik = Sijjk— mgsj—B}k 8si> Zijllk = &ijle '“kagsj—pffk 8is
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It follows from (2.7) and (2.8)

(2.10) By g+ Bjxgis = 0; Diyg;j+D5xgis = 0

or equivalently:

(2.11) QirBY=0; QDL =0

From (2.8) it follows:

The relations (2.11) are cquwalent with the re]ations:

(2.13) Qﬁ';Bﬁx = B};; Q;}D:k = D_ijk

From (2.12) and (2.13) it follows:

214 {Qir irBs _TI __Ti

A% QUDy—Q5D;; = 84— S,

or:
1 .

(2.15) “5Bﬂc 88 " Bf—Bi;+gu 8" By)) = Th—Tj
1 X .

(2.16) ?(Djk_gsjg'r‘n:k _Dij+gnkng:J) = S}E‘S}k

Then we have:

82 A -

(2.17) QB — 5 88 Bt 5 8u8" Bjr = &y g"(Ts,—T%)
1 1

(2.18) Qi Dy — > 8 g"Dir+7 248" D5 = 2,;8" (8% —Si»)

Inverting j and k we obtain by addition:
(2.19) { Q% B+ Q5 B}y = 8,;8"(Té, —Ti)+ g 8" (T} — T},

(220) QJD:I:'I'QHD’ —g,jg"(Si,—Sf,.)+g&tg£'(Sj,—S},.)
Summing (2.14) with (2.19) and (2.20) we obtain:

@21) 200 B, = TH—Tj¥; 20408 = Sji-
and also:
222) Th = The+ 88" i+ 208" T3,
where:

iE 5 1 L 1 Si 1 i

T 1s equal to 3 5 or TT"*’ or = Sik or = Sik and
: o 2 1 1 i *i 1l o

corresponding 7} is equal to? i or > T; or 5 Sjk or §S,,,
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Theorem 2.2. Let FI'=(N, F,C) be a fixed Finsler connection, then the set
of all Finsler connections with the properties (2.7) has the same multitude as the set
TIXT.

Proor. The set #FI' ={FI'=(N, F,C)} of the Finsler connections with a fixed
non-linear connection N and with the properties (2.7), is given by (2.2), where (T, 5)
are the torsions of FI" and (7, S) are the torsions of FI'. The transformation (2.2)
establishes an one-to-one correspondence between #I and I}XT]. It follows
that #T and TiX3T} has the same multitude. We denote the set #FI' also by
FTI (N, g).

Theorem 2.3. Let T, S¢I} be two given tensors, then exists an unique Finsler
comnection FI'=(N=N, F, C)€#T with the torsion (T,S), and exists an unique
g-transformation which transforms a Finsler connection FI'=(N, F, C) in the Finsler
connection FI'=(N=N, F, C) with the given torsion (T, S)eI3x3I}.

Equivalently we have:

Theorem 2.4. Let N be a fixed non-linear connection, then any Finsler connec-
tion FI'(N) with the property that its h- and v-covariant derivatives g;;; 8l are
given by the fixed Finsler tensors Gij, g is uniquely determined by its torsions
(T. 5).

PrROOF. Let FI'=(N, F,C) be a Finsler connection having the given torsion
(T, S) and the fixed tensors g;;,=Gin. &ilx=&ir» and let FI'=(N,F,C) be
another Finsler connection with the same properties g;;x=Giju; &ijllx=8ijx- It
follows the relation (2.7) and FI'(N) is obtained from FI'(N) by a g-transforma-
tion of the form (2.2), the torsion of FI'(N) being (T, S). If exist two different
Finsler connections FI'(N)= FI'(N) with the given properties and with the same
jorsion tensors T=1T, S=S, then from (2.2) it follows F=F and C=C, ie.
FI(N)=FI'(N).

We obtain the following particular cases of Theorem 2.4:

1. If FI'(N) is a metrical Finsler connection, then G;;;=0, g;5=0, and we
obtain the classical results of R. Miron [7]:

Theorem 2.5. If N is a fixed non-linear connection, then any metrical Finsler
connection FI'=(N, F, C) is uniquely determinated by its torsion.

Theorem 2.6. If FI'(N) is an arbitrary fixed metrical Finsler connection, then
any other metrical Finsler connection FI'=(N, F, C) is obtained from FI'(N) by a
g-transformation (2.2).

[

If FI'(N)=FrI is the Cartan connection, i.e. the metrical tensor g is subordi-
nated to a Finsler space F,=(M, L), then, because the connection is metrical and
T=0, §=0, it follows that this is the unique connection with vanishing torsion,
and any other metrical Finsler connection with the torsion (T, S) is given by (2.2)
where T=0, S=0. We have in this way an other known result [7].

2. Let FI'=(N, F, C) be a Finsler connection with the torsion (7, S) and with

(2.23) Gijx = 281;0; 8ijx = 2817
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where w=w, dx*+,6y* is a fixed 1-form of T(M), then FI'(N) is the conformal
Finsler connection FI'(N, w). Any other conformal Finsler connection FI (N, w),
with the same 1-form w satisfies the relation (2.23) and consequently also the rela-
tion (2.7). It follows that any other Finsler connection FI (N, w) is given by (2.2).
If the torsion (T, S) of FI'(N, w) is the same as the torsion (7, S) of FI'(N, w),
then from (2.2) it follows: F=F, C=C. As a particular case of Theorem 2.1 and
of Theorem 2.2, we have:

Theorem 2.7. If N is a fixed non-linear connection, then any conformal Finsler
connection FI'(N, w) is uniquely determined by its torsion (T, S) and by the 1-form w.

Theorem 2.8. If FI'(N, w) is a conformal Finsler connection with the 1-form w,
then any other conformal Finsler connection FI'(N, w) with the same 1-form @ is
obtained from FI'(N,®) by a g-transformation (2.2) and has the torsion
(T, §)eTiX ;.

If we consider the conformal Weyl connection: N=N, F=F, C=C, denoted
by WTI' (w), then because of 7=0, S=0 it follows that this connection is unique,
and any other conformal Finsler connection FI'(N, ®) with the same 1-form
® can be obtained from WI (®) by a g-transformation (2.2), where 7'=0, S=0.
This is a theorem of R. MIRON and M. HAsHiGUCHI [9].

§ 3. Finsler g-transformation having the invariants i’ and g

We associate to the Finsler connection FI'=(N, F,C) the Finsler tensors:

B Ih=Th- — GL—8T); Th = Sh———r (35, ~5i5))

where: T, =T}, S,=S& we can enunciate

Theorem 3.1. The set of all Finsler connection tramnsformations tcJy, which
have the invariants I : I and are g-transformations, are given by:

(3.2) N = Ni; Fiu = Fh+dia;—gad'; Cﬂ: Clk+6l:8"'_gﬂ-31
have the invariants I I and are g-transformations, are given by:

W
(3.2 szN}; ij=ij+5k“g g*rx Cg—C +5 ﬁ

FKUUr. A g Udansiuimbauvn 1€y, 15 0l fie ot L z.) uupobmg {uc conditions:

(3.3) {;k ~ gjk; Ii =Ij
we get
(34) Jii_Tﬁi = 51‘1“1—811;9"-; S}",f—S},‘ - 6iﬁ1-gjkﬁl
| e |
where: o; = — w1 (TJ—TJ); B} =— el (Sj'—gj).

Replacing it into (2.2), it follows (3.2).
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Inversely, (3.2) is a g-transformation, and it is easy to see that 1I and;;r are in-

variants of this transformation.
We denote by #I'' the set of Finsler connections with the properties (3.3).
Particularly we have the

Theorem 3.2. If FI'(N) is a metrical Finsler connection (G,;=0, g;;,=0), then
the set of the metrical Finsler connections with the invariants { and g are given by

(3.2), where o; and B; are arbitrary Finsler covectors.

The set of the metrical Finsler connections having the properties (3.3) will be
denoted by FTI;.

As a particular case we find again the results from [10], where the general 7y
transformations with the invariants {, I [12] has been considered, imposing the con-

dition that FI" and FI' are metrical The following known results are also obtained
as particular cases:
If FI'(N) is a metrical Finsler connection and { =0, }2' =0, then also FI'(N)

is a metrical Finsler connection with { =0, g =0.

Theorem 3.3. By a Finsler g-transformation a semi-symmetric metrical Finsler
connection FI'(N) is transformed also in a semi-symmetric metrical Finsler connec-
tion FI'(N).

Theorem 3.4. The set of all semi-symmetric metrical Finsler connections T
or FI''=° is given by (3.2), where FI'(N) is an arbitrary fixed semi-symmetric met-
rical Finsler connection.

We have the relations: FI5cCFIicFI’, and we denote similarly the cor-
responding transformation groups too.

The Weyl type conformal invariants Hj,, M}, and N}, of the group &I has
been determined by R. MIRON [9]. The projective Weyl invariants I;V, l’g/ I;V of

the group # I has been determined in [11]. A special subgroup of #T7 is the group
of S-concircular Finsler transformations. Their invariants has been established in [5].

It follows that the Theorems 3.2, 3.3, and 3.4 are special cases of Theorem 3.1
and all these theorems are obtained from the fundamental Theorem 2.2.

§ 4. Special classes of non-g Finsler transformations

The set Jy of the Finsler connection transformations with the same non-linear
connection N is formed obviously from g-transformations and non-g-transforma-
tions.

The tensors Bi; and Di, can be written as

A —— ’ .
' 1

1 = 1
(4.1) Bj = 5(7"}&-7}'&)-%5‘(85&3&;): Dl =ﬁ(7}‘k—Tﬁ)+—2— (Dix+Di)).
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We denote the last terms of Bj, and Dj, with Vj,, Vj,. They are symmetric
tensors. From (2.9) and (4.1) it follows
4.2) Gjx = G+ ﬁi’—T;‘i‘—V}a: g = gu+Si—Si—Vj

where we denote

‘| 1
4.3) G = 5 gi“(gaj]k'*'gckl,'—gjklc); g = 58“(3¢jlk+gak|j— gjikla)
e ) Py s s y | . s ‘s
(4.9) Gix = 38“(6«1& +Gaj—Gjra)s &l = 38"(&:}; +&akj —Ejka)-

It follows Gj#Gj; or(and) gi=gj from G;;#gy or(and) g u#gilk,
and we have

Theorem 4.1. Any non-g-transformation ty ...,y is of the form:

4.5)

s >3 . 1 .
)= N}, Fi = F}x"‘ T_‘;?—TJ?+58‘°(3a;;k+gatu—gjx|a)—G}ti G}x # Gl

o* w1 =i . =i
(4.6) Ci = Ch+ Si— Tt 3 g (8ajlk+ garl j— 81nla) —&iks & #= g

where Gy, g are two arbitrary symmetric Finsler tensors, which interpretation for
a fixed FI' (N) is given by (4.4) and T, SeX} are two arbitrary tensors, where (T, S)
is the torsion of FI'.

Inverse:'y.‘ From (4.5) and (4.6) it fO”OWS gij|[k=Gi k?fgu“;; gijuk=g-£jg ¢gl‘j'k
for any T, ScT}. Therefore (4.5) and (4.6) characterize the Ty oo, set of the non-g-
transformations.

Denoting by Zy, the set of the g-transformations we obtain
Theorem 4.2. ( First Separation Theorem.)
FN = %guj;\fnonn; fh’yn g.'-\'nong = G-

The importance of this theorem is obvious in view of the determination of
those special classes of Finsler connection transformations, where covariant deriv-
atives or torsions of the connection satisfy certain conditions.

If we do not take into account the separation condition, then Gj,# G, or(and)
gx#gh and we obtain the global theorem of Separation, which is the principal
theorem of this paper:

Theorem 4.3. (Second Separation Theorem.) Let g be a general metrical Finsler
structure of Miron type [7), then between two arbitrary Finsler connections FI'(N),
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FI'(N) the following relations hold:

* 1 a
4.7 Nj= Nj; Fj= Fj+ Jki_Tjt“*"z" 8 (8ajix+ 8akyj — &kia) — Gl

- - *I l ‘ -"
(4.8) Cix = Ciu+ Sii—SHi+ 3 g (8ajlk+ 8arlj— 8jula) — &k

where (7, S) and (T, S) are the torsions of FI'(N) and FI'(N) respectively, and

Gl Ig'f},_ are given by (4.4). &
in the relations (4.5) and (4.6), G, £ are fixed and (T, §)eTix I} are
variable, then we obtain the

Theorem 4.4. The set of Finsler connections T (N) with the property that G,
and g,;, are fixed, has the same multitude as the set T} XT}.

Theorem 4.5. Let FI'(N)¢ 7 (N,g) be a fixed Finsler connection, then any
Finsler connection FI'(N) with fixed G,j, & is uniquely determined through its
given torsion (T, S), and is obtained from FI'(N) by means of a non-g-transformation
(4.5)—(4.6).

It follows that an arbitrary fixed Finsler connection FI'(N) and the set T}xT1
generate the class of Finsler connections FI'(N), with the property that the 4- and
v-covariant derivative G, & are fixed by certain properties.

Particularly for G;;=0 and g;;,=0 we obtain the

Theorem 4.6. The set of all metrical Finsler connections FI (N) obtained from
a non-metrical Finsler connection FI'(N) is given by:

L) : |
(4.9) Y= Nj; Fjy = Fj+ J:‘i_TJ'*ﬁl-'_? g‘a(gajlk_gaku‘l'gjkla)

i * * 1 ia
(4.10) = Cix+Sji—Sji +‘E 8" (8ajlx+ gaxl; — gjla)

and any FI'(N) is uniquely determined by means of its given torsion (T, S).

This special case is studied in [14], starting from the Sanini transformations [8].
Comparing the relations (4.9), (4.10) and the Sanini transformations:

; . T |
Nj= Nj; Fjp = F;’k"‘? 8" Zajix + Q4 Xk
@.11) :
-

where X, Y are arbitrary Finsler tensors, we obtain directly that

Cjt = C.:‘i 42 g“gulk + ‘2.::' rst

g% A
(4.12) Qf} "= Tﬁ"’rjx“f*i g“(gnklj_gjﬂa)

- $ Saznal
(4.13) Yk = R—Sﬁf'l'i gh(gaklj_'gjkla)
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Hence the last terms of the relations (4.11) are uniquely determinated by means of
(T, S)eT3xT].
What about the form of X and Y in this case? Since we have:

(4-14) Qtir U *irU

where U and U are the Finsler tensors from the right-hand member of (4.12) and
(4.13), it follows that the tensor systems (4.12)—(4.13) are compatible, and has the
general solution:

Xjh = T — +% 8" (8ak1j — 8jnia) + ) X
(4.15) 1
= Si— S+ 8°(8al;— ginl) + 20 Yo

where ¥, ¥ are arbitrary Finsler tensors with null effect in (4.12) and (4.13), since
QirQp*=0. Hence in (4.12)—(4.13) the tensors X and Y must be fixed as in (4 15)
for a fixing of FI'(N), otherwise the right-hand member of (4.12) and (4.13) is not
compatible with the left-hand member for a fixed FI"(N).

We suppose that FI'(N) is fixed from the condition, that it has not the same
torsion as FI'(N). If X and Y are completely arbitrary, then considering

(4.16) rk =3 2 gn (&m: grk]a)a ri'. —a 2 g“(guk[r grl:lu)

it follows that FI'(N) has the same torsion as FI'(N). This is a contradiction. Thus
can be considered the Sanini transformations are explicitly expressed also in this
way too as a particular case of the Theorem 4.5.

If FI'(N) and FI'(N) are metrical Finsler connections, then the explicit form
of the Sanini transformations is

(4'17) rk — T -Tjts rk — S}ki_ _Tl‘
(4.18) Xj= T TR+ Q5 X5 Yje = Sji—SK i+ Qi Y3

namely we obtain (2.2), and these transformations depend on the two skew-symmetric

tensors T}, Sj€T; only. For the case of the Cartan connection FI'(N)FI'(N),
which is metrical with T=0 and S=0, the explicit determination follows from
(2.2) as given in Theorem 4.6 of R. MiroN [7].

Considering as 1-form on 7(M): w=w, dx*+2,6y* and the relations

(4.19) Gip = 28005 &ipn = 281

we arrive to
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Theorem 4.7. The set of all conformal Finsler connections FI'(N; @) obtained
Jfrom an arbitrary fixed Finsler connection FI'(N) is given by

. L TS e Lt
(4.20) Nj = Nj; Fiy = Fp+ Ty -Tq +E gh(gajlt'i'gatlj_gjk[a)_
—5}0);‘—5;‘,(01-1-5'1,"(0‘
A Sl 1
4.21) Ci=Cih+ Sﬂi_ka"}"z‘ 2 (Gajli+ 8arlj— Gjula) — 0 A — Ok A; + g 2.

Therefore we obtain as a particular case of (4.5) and (4.6) the results from [2]
for N=N and an explicit determination of QX and QY.
For a fixed w=w, it follows

Theorem 4.8. Let FI'(N) be a fixed Finsler connection, then the set of all con-
formal Finsler connections with the same 1-form ®,, denoted by FI' (N, w,), has the
multitude of the TLX T set.

§ 5. Non-g Finsler transformations which have the invariants { and {

From the relations (3.1), (3.3) and (3.4) we have the

Theorem 5.1. A necessary and sufficient condition for a non-g-transformation to
have the invariants {' andg is that it be of the form:

e - Y
5.1 N = Nj; Fiy = F}k'*"siaj_gjkal"*-i 8" (Zajik+ 8ak)y — 8yu1a) —Clx

= . o | ¥
(.5°2) Ci = Ch+0iBj—gubB' + 5 8" (8ajle+ garl ;= gjula) — &k
where a, P, are arbitrary Finsler covectors, and Gj, gj, are arbitrary symmetric
Finsler tensors G}, and g}, are given by (4.4).
For G},=0, gi,=0 we get the

Theorem 5.2. A necessary and sufficient condition that the Finsler transformatton
1€y, which transforms a fixed general Finsler connection FI'(N) in a metrical
Finsler connection FI'(N), has the invariants { and g is that it be of the form:

i i l
(5.3) N} = Nj; th = ij +5km.l'_gﬂaf‘i-igh(gajlk'i'gak]j_gﬁcla)

e F
(5.4) Cix = Cix+0iB;—gu B + 5 8 (8ajlc+ 8axlj — 8kla)

where o; and B; are arbitrary Finsler covectors.
We obtain as a special case the transformation from [11].
Theorem 5.3. The transformations (5.3)—(5.4) with { =0, 12’ =0 form the class

of the Finsler connection transformations t€Jy, which transform an arbitrary fixed
semi-symmetric Finsler connection in a semi-symmetric metrical Finsler connection.
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Analogously from (4.20) and (4.21) we have the:

Theorem 5.4. The class of the transformations t: FI'(N)—FI (N, @) which have
the :'nvan'tmts{ and g are characterized by:

1
(5.5 NY = Nh; Fiy = ka‘ﬁ‘”k‘*‘ﬁf}“&tf‘*“f gh(gajlt‘*‘gaku‘gma)

1
(5.6) Cj‘k = C}k_aji;-k'i'éi’fj == S '?"*'? gu(gajlk +8ak|j—gjk|¢]

where &, and n, are arbitrary Finsler covectors.

In this way the importance of the First Separation Theorem and of the explicit
determination of the tensors Q% X7 and QY from the Sanini transformations is
accentuated, these transformations being obtained as a particular case of the g-trans-
formations and of the non-g-transformations.

In a forthcoming paper we shall give a Separation Theorem also for the set of
general Finsler connection transformations 7= {t|t: (N, F,C)—(N, F, C)} with a
variable non-linear connection N.

Presented on a scientific meeting at Debrecen University in September 1985.
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