A general minimax inequality and its consequences

By ZOLTAN SEBESTYEN (Budapest)

Two real-valued functions f, g given on the Cartesian product XX Y of two
nonempty sets X, Y are said to satisfy minimax inequality if the following holds:

(MMI) inf sup glx,y) = sup mf f(x, y).

YEY x€X
In the case when g equals f (MMI) is known as the statement of any generaliza-
tion of the celebrated minimax theorem due to von Neumann, namely the following
minimax equality:
(MME) inf Supf(x, y)= p mff(x, ¥):

yEY x€X

Since (MMI) holds if and only if for every positive real numbers ¢

inf sup g(x, y) = sup lnff(x, »+ec
yEY x€X

holds, that is for any ¢>0 there exists (x,y) in XXY such that
sup g(u, y) < inf f(x,v)+c¢
ueX veY

or, what is the same, for any ¢>0 there exists (x,y) in XXY with

0 =f(x,v0)—g(u, y)+c

for every (u,v) in XXY.
By introducing, as in [3] the sets in X XY as follows

K§ o= {(x, Y)EXXY : 0 = f (x,u)—g(u, y)+c¢}

we see that (MMI) is nothing else that {K{,: (u, v)EXX Y} is a family of subsets
of XX Y with common point for every c¢=>0. Our approach, as an improved one
of [1], [2], [3] is the following: we give conditions on f and g, sufficient for the sets
K; , having the finite intersection property for any ¢=>0 and also sufficient for a
topology with respect to which these sets are closed and one of them is even com-
pact, for any ¢>0 as before. The well-known principle of Riesz for the existence
of a common point, for every ¢>0, then applies. We note that the usual concave-
convex type and continuity requirements besides some compactness assumptions
in general implies our ones. So we prove a rather general minimax theorem some
consequence of which are presented here. It is of natural to ask wther the “fixed
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point” type minimax theorems also follows from ours or not. For minimax inequal-
ities see S. StMMONS [4], Z. SEBESTYEN [2], [3].

Theorem 1. Let f, g be real-valued fumctions on XX Y satisfying the following
three properties:

1) min 2 A& 0)—-gw,y)]= sup  min (x 0)—gw, y)]

(u,v)EG (x,yEF (%, )EXXY (u,v)EG

for every pair F, G of finite sets in XX Y and a discrete probability measure /. on F;
()
0= inf sup [fxo)—gw]= sup 2 pu(u,o)lf(x,v)—g(u )]

(4, L)EXXY (%, ) €EXXY (X, )EXXY (u,v)EG
for every finite subset G of XX Y and a discrete probability measure u on G;
3 for every ¢ =0 there exists (u.,v.) in XXY

such that if DCXXY has the property: for any (x,y) in K, there exists (u,v)
in D with (x, )4 K¢, then the same property holds for some finite subset of D.
Then the minimax inequality (MMI) holds for f, g on XX Y.

ProOF. Let {XXY¥Y\K{,: (u,v)€EXXY}, the complements in XXY of the
sets K ,, be the open subbase of a topology 7. for a fixed ¢=0. Property (3) then
assures, besides the closedness of Kg s, that KS _; is even compact by Alexander’s
subbase lemma. Thus only the finite intersection property of {K¢,: (u, v)EXX Y}
remains to be proved. Let now (i, v,), ..., (4,, v,) be given points in XX Y. We

n

prove in the following that () K , is nonempty. For if the contrary holds for any
i=1
(x,y) in XXY there exists i, 1=i=n such that f(x, v;)—g(u;,y)+c<0, ie.

4 rn‘in[f(x.v.-)—g(u.-,y)%-C)*:O forany (x,y) in XXY

holds. As a consequence, the range ¢.(XXY) of the function ¢, defined on XXY
(and taking values in R") by

B  o.x ) = (fx,v)—gwm, y)+ec, ... f(x, 1) —g(u,, y)+¢) (x,yEXXY)

does not meet the positive cone R% ={(4,, ..., 4,): 4=0 (i=1, ...,n)} in R". We
state a little more: co ¢ (XX Y), the convex hull of the range, also doesn’t meet
int R% ={(4,, ..., 4,): 4=0 (i=1, ..., n)}. Indeed, the assumption of the contrary
implies the existence of a finite set Fin XX Y and a discrete probability measure A
on that such that

0= (xgepi(x, N, v)—g(u, Y +e, i=1,2,..,n

holds, which is equivalent to holding with G={(i;, v;,)}!,
—c< min_ 2 Al pf(x,0)—g(u, y)).

(n,v)eG (x,y)EF
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But (1) implies then

S sup min U(x’ I?) _g(ul y)]s
(x, EXXY (u,v(€G

the existence of (x.,y.) in XXY such that 0<f(x., v)—g(u, y.)+c holds for
any (,v) in G. But this contradicts the starting assumption that {Kg ,}i., hasn’t
a common point (as e.g. (x., y.)). As a consequence a separating, nonzero vector
(415 .-, 4,) exists for co @(XXY) and int R% in the sense that

3 mlfe )= glus M +e = 3,

holds for every (x,y) in XXY and (4, ..., 4,)€intR%. It then follows y;=0
for i=1,...,n, and 2 w;=1 may then be assumed. In other words a discrete
i=1

probability measure p exists on G such that

P4 5 p(u, 0)[f(x,v)—g(u, p)] = —c

(u,ve

holds for any (x,y) in XX Y. Then (2) implies

0= inf sup [f(x,0)—g(u, )] =—c
(u,0)EXXY (x,y)EXXY

a contradiction, because of positiveness of ¢. The proof is ended.

Theorem 2. Let f be a real-valued function defined on XXY and satisfying
the properties of Theorem 1 in the case when g=f. Then (MME) holds for f on XX Y.

PROOF. As a direct consequence of Theorem 1 we have

inf sup f(x, y) = sup inf f(x, »)

YEY x€X x€X yeY

for the function f. But the converse inequality is clearly holds for any function on
XX Y, so that the proof of (MME) is complete.

Theorem 3. Let f be a real-valued fimction on XX Y satisfying the following
three properties:

(6) min 2 4(x)f(x,v) = sup min f(x, v)
veEG XEF x€EX P

for every finite sets F in X, G in Y and a probability measure A on F,
Q) inf supf(x, v) = sup > p(v)f(x,v)
XEXvEG

vEY x€X

for every finite set G in Y and a probability measure p on G;

(8) for any c€R, c¢ < infsup f(x,v) there exists v,
vEY x€X
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in Y such that if CCY has the property: for any x in X such that c¢=f(x,v.) there
exists y in C with f(x,y)<c then the same property holds for some finite subset
of C too.

Then f satisfies (MME).

Proor. Take g the function on XX Y taking the only value c¢*:=inf sup f(x, v)
vEY x€X
which is easily seen a real number, not the X infinity, by (8). Theorem 1 then applies.

Corollary 4. Let f, ..., [, be real-valued functions on Y, a nonempty set, sat-
isfying
© inf max f; () = max 3 £;(0)
Jor any finite set (v;) of Y and p; =0 such that 3 p=1.

i
There exists then 2;=0 (j=1,2,...,n) with 3 ;=1 and such that
J

(10) inf max £,(o) = inf 3 4,/,(0)

veEY
holds.
Proor. Let X be {(4, ..., 4,)ER": 4;=0 (1=j=n) 3 A;=1 and let f(x,y)=
=12).jj}(y) for x=(4;, ..., 4,)€X and y€Y fis thenil function on XX Y, with

X is compact and convex in R", affine (thus concave) and continuous in the first
variable. Thus Theorem 3 applies and gives our statement.
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