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1. Introduction

In our earlier papers [3] we dealt in details with the nonparametric statistical
identification of the discrete and continuous Zadeh systems.

This paper discusses the discrete and continuous first order Zadeh (so called
Uryson) systems furthermore the nonlinear systems represented by Volterra func-
tional series with autoregressive processes as input signals. Although the non-
parametric identification of Volterra models is well-known see for example Schetzen’s
[5] general spectral-factorization method in frequency domain, we introduce a very
simple procedure for the estimation of the Wiener Kernels given in time domain
by explicit formulae.

It is also known see for example Anderson [6] that one can get a good approxi-
mation for the ARMA processes by autoregressive processes. Therefore the obtained
results have practical values in case of ARMA input as well.

The last argument is of course valid for the identification of the Uryson models
too. Furthermore the obtained results for the determination of the first order Rajb-
man kernels (see [1]) of the Uryson system can partly be used for the estimation of
the higher order Rajbman kernels of the Zadeh nonlinear systems. Thus in the
first part of this paper we are dealing with the nonparametric identification of con-
tinuous and discrete Uryson systems, mostly with the first and second order auto-
regressive input processes. Furthermore in the second part we present the identifica-
tion of continuous and discrete Volterra models with autoregressive input of pth
order.

Finally we point out the relationship between the Volterra and the Zadeh
model identifications when the input process is an autoregressive one. A general
identification of the Zadeh model using autoregressive and ARMA input process
will be discussed in a forthcoming paper.

2. Identification of continuous Uryson models with AR (1) input process

It is well known that the identification of first order nonlinear dynamic systems
can be frequently described by Uryson models (which is a first order Zadeh one).
Its most important special cases are the simple and cascade Hammerstein systems
both in the scalar and multiple variable cases.
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The usual form of discrete stationary Uryson system is
y(O = 2 ulx(t—k), k1 +{()

Here u is an arbitrary Borel measurable function and { is a zero mean noise process,
which is independent of the input. In the case of active identification the input
signal is chosen as discrete white noise with zero mean and unit variance. This case
was dealt with in details in [3]. In the continuous time case, instead of the gen-
eral form

y0) = [ ulx(t—s), s)ds+{(?)

0

the following (analytical) Uryson model seems to be useful, if the input x(¢) is an
arbitrary Gaussian process

YO = [ ulx(t—9),s1ds+¢@ = [ 3 0, H,lx(t—9) ds-+ (1)
0 0 L

where the input is independent of {(¢) and

H,(x) = Zf;—ll/; exp [—%2] :—; exp [—52’;]

are the standard Hermite polynomials and a,(s) are continuous functions and
a,(s)€L%(eo, =) for all n

» fﬁ a(s)ds <o

n=1g

For the sake of simplicity in handling of the formulae it is assumed that the process
x(t) is of zero mean and unit variance.

Let’s consider now the determination and estimation of the normed dispersion
function (correlation ratio) by a finite sample. For Uryson models the dispersion
function has the following simple formula

kL@ = SR and Z,(t—7) = Hlx(—9)]
where ™~

Rin®) = 3 y(+ ) B [x(0]

are the cross correlations between the output and the Hermite polynomial variables.
For ergodic continuous time series the estimators are

KL() = gf:Rﬁz.(r)
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where

T
Re® = [ Ye+OHOld, n=1,..,N.
0

It is easy to see that the estimator of R, (7) is unbiassed, but the estimator of the
dispersion function is biassed because of the squaring and the finite upper limits
of summation. However, this estimation method is simple and also the bias is ex-
pectedly smaller than the well known estimator of the dispersion function computed
by the formula in [1]. In the linear case it is clear that

K3 (1) = R3z, (1) +0+... = R},(),
i.e. all the cross correlations vanish except the one of order one
Rz, (71)=0, n=>1

Since the generation of exact continuous white noise process for the input is almost
impossible, it is useful to choose a zero mean and unit variance stationary first
order autoregressive Gaussian process, the so called coloured noise [7] with auto-
correlation function e~°l"l and spectral density,

2a

Fxx(w) = ag_,r_wg

If we use the above specification of the input Gaussian process, we can get the ker-
nels of the Uryson systems from the following simple relationships

"
a,(s) = naR,Hn(s)—E Ryn (s), n=12,...

s€[0,7] or [0, <)

or by the expression of differential operators

a,(s) = 71‘1-[01.'.1)2 ]R,Hn(s) [ a—---—-] [na+ - ] Ry () n=12,...

For the proof of the above equation we start from the spectral density function
of the continuous first order autoregressive process. On the basis of the relationships

V2a__V2a

atjo a—jo

Fo(0) = Fii (o) F; (jo) =

and similarly for the processes H,[x(7)]

2na 2 l/m 2na
(na)*+w* ~ na+jo na—jo

Fy,(0) = Fj,(jo) Fg,(jo) =
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it is not necessary to use the spectral factorization procedure but it is satisfactory
to analyse the equation

L. 2
(1) .R,gn(S) = —2—7:— f G,,Um)ﬁ eI do

naturally only for positive values of time delay “s” (where F is the symbol of the
Fourier transformation)
G,(jw) = Fla,(s)]

F(Ryn,) = G (jo) Grasey—

and

Thus by (1) differentiating R,y () twice we get that

2naw?

2
(2) _:j;?RyH,.(S) f G O ) ( )2+ a2 ejws dﬂJ'
and so from (1) and (2)
d? 1 .- :
HGR,HH(S)—'FRJ,HH(S) = -‘27; f G,,Uco)e"“” dm — a,(s)

Theorem 1. The estimation of kernels a,(s) can be carried out by the formula

6,9 = —— [y~ (L )] 0,09

where
T

Ry, () = [ yOHIx—9)dt
N

It can be proved that the estimate of 4,(s) is umbiassed and consistent one.

3. Estimation of weighting coefficients for discrete Uryson models using auto-
regressive input processes

Let us consider the following Uryson model

Y= 3 3 s H[Z(-)]

We shall estimate the weighting coefficients g;(i) when Z(n) is a first order discrete
autoregressive random process, 1.€.

Z(n) = AZ(n—1)+e,
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Here ¢, is a discrete Gaussian white noise series with zero expectation and unit
variance as well as |A|<1. Then the autocorrelation function of Z(n) is

l‘ Jl
c(li Jl)ﬂ_}.

Let consider the expectation
Sli=J1
Ey(oH[Z(k-DI= 2 g:(r)[ = A,]
from where we can get an estimation for
g i=0,012,... if |g@) =4, ie.

the weighting coefficients have exponential characters, the system of equations

N ill—jl !
EYWH[Z6-D] = 3 () (=) i=on2..¥

Now we introduce an another more simple estimator for g,(i) using explicit for-
mula and so a direct computation procedure. Let us take the generator function
of series g;(i) by

Gi(v) = g: g (o'

using G,(v) we can get the generator function for the cross correlation function
between H;[z(n—j)] and y(n) i.e.

s o =11
k0 = 3 3 a0 (1) v = gy 280 S -1l =

= a7y 280 .A“ > [,] +o Saiy-] =

l ea
=Ty &8O | =

TR - Y PR S | e S [N
==y 80| a5+ —v)(l—).’v)] -

0 (3 —

1 " 4
- a2y [).’—v G+ @-v)Q A‘v) Gi( )]
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From where

1 F_ -
G\(0) = [(l-—l’)'&(v)‘p_i_; G,(,l')] * v(?ssl_ l; ) _

= [ -2 (=) K ()~ 2 G, (1] ar—p (o~ )

Because of

EY(n)H(x(n)) = K,(0) = 57 Gi()

l
Al)l
we get, that

Gi(o) = [(1=2- & 3 EY (1) Hi{x(n 1)) ~(1~ 2K )] o (2-2)

v

Theorem 2. And so it follows

g (0) = %,ﬁ)—().'EY(n)Hg(x(n 1)) —EY (n) H,(x(n)))

g() = (1 “ ——— (MEY (n) H(x(n—2)) — EY (n) Hy(x(n— 1)) (1 + 2*) +
+ A'EY (n) H,(x(n)))
,()_ “ [I'EY (n) H,(x(n—j—1))—EY (n) Hy(x(n—j)) (1 +A*) +

+'EY (n) Hy(x(n—j +1))]
We get the estimates by the empirical moments instead of the theoretical ones

o
81(0) = -—-—12— [Y () HY (x(n)) —2'Y (n) HY (x(n—1))]

__aanl
&(j) = % [(1+22)Y (n) Hy(x(n—j))— (Y (n) Hy(x(n—j—1))+

+Y () Hy(x(n—j+1)).

It can be proved easily that these estimates are unbiassed and consistent.

We show that there is another interesting method for the determination of
g:(i) using a relationship between the spectral density and autocorrelation func-
tions of stationary input series.

If ¢(0), o(1), ... are an autocorrelation series of a stationary time series for
which

0(0)+2 gw(n)l = T e

n=—ea
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then its spectral density function is

Q) = —2-%; a(o) +—; 2’; a(n)cos (An) =

=2l 2:' o'(n)cos(-—).n)—z— Z a(n)e'*

From the spectral density function we get the autocorrelation function by

o(n) = fr ein £ (7) da

=

These formula are valid properly for the Fourier transform of nonnegative definit
absolutely summeable series [6].
We remark that if the spectral representation of two stationary time series are

™
= [ e"a()du

and
= [ emgy(3)dp

where the stochastic spectral measure u is same for both cases then their cross cor-
relation function is

Con(n—m) = [ € @=™3g, (3) gy(2) E|dpl?
Now let us consider the spectral representation of the original input series i.e.

k]
f q_j.—i@ dnuﬂ (EZ,,Z,H_; — L'g_]
m S R v ; g

where E|du,|*=dw and the spectral representation of stationary time series
H|[Z(n)] is

H;IZ(?!)] f V(::;S)I l—j_lle_i“’ d#

where
E|dyl® = do.

We get for the spectral representation of the process

yi(n) = g’; @) H(Z(n—)]
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the following result
7)== Il _‘._218 a0 | 4 ;2); 7S A:e_;o, dp =

V2r %

N
V2r

|
__’;.l'e—l‘m

inw 2 -ijo )l/ j'ﬂ du =
€ gl(} (l iz)l l # = g

¢ Gy(e™") Si(e™") dp,

where

Gi(2) = j; a()Z'

1—22% 1
S‘(z)=l' -2 1-7z

Because of the orthogonality of polynomials H, it follows that

EY (n) Hi[Z(n—))] = Eyi(n) H[Z(n—))]

The spectral density function of this cross correlation function is

K;(OJ) = 2_17c n=§w Ey;(n)H,[Z(n-—k)]e-‘m“
The formula
En(HIZ0—0) =5 [ €6 (e) 5™ do

holds for any integer number & so

K(w) = —— Gl (e~")S,(e~"*) S (")
from where
=0 Gi(e=®) = e 2 —K(0) = A4y (1-2'e®) (e — e~ K, (o)
2% ° T ISEHE T T :
_and
2_In_ G;(e_i”) P 2_1’:_(_11_1.#:')[_2%2104_(1 +J.“)e""—ﬁ.‘]K,(m)e"‘“’ e

(l .

& L5 ——- [ A+ (1+ 22— e ] K (w)
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and so
L A
&) = —-AT[(HA )Ey(n) H,[Z(m)]—
— 2 Ey(n) BZ (n— )]~ Ey () HLZ(n-+ 1))
Theorem 3.
A
00) = =2 By BLZ (01~ 1 Ey (i Hi(Z(n - )],
(-2

g()) = = [(1+22YEy(n) H[Z(n—))]—
— A [Ey(n)H[Z(n—j+1)]+Ey(n)H[Z(n—j—-1)]].
We approximate the variance of obtained estimator

AU
80) = S [+ YD IZo )~ A 5o Zay o + 5o 2]

by the followmg

Aﬂ)l
3:'.0) ey Y | [(l +j~2')]/_ Z b H(Z, - j) ynH:(Zn j)]z ]

i V : > D H(Z VuH\(Z :
+ m Z 1(Zk-js ) =YV H(Z,- j . DI +

1 i
Y T B D |

4. Identification of the continuous and discrete Uryson systems using AR(2)
input processes

In this case for the identification of continuous Uryson model the input is a
second order autoregressive process with equation

Z(1) = aZ()+BZ () +e(1)

where e(7) is a white noise, i.e. its autocorrelation function is

R::(s) - 7 111 [Aze-xll"l—).le_zﬂsl]

where 4,, 4, are two different roots of the equation x*—ax—f=0. Let us denote
its Fourier transform by

IS W 8 «p
@+ T *+Ai] T o'+(*-2p)w*+ B2

1
(@) = —% [21
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and consider for example the Fourier transform of the autocorrelation function
e of Hy

02(7) = cov [H3[t(1)], H3[2()]] = 2R3 (7)
which has the next form

- —20fw? —8xf(B+a?)
) = 2 Ao+ — 20 f ) 16

We can determine analogously the Fourier transform of autocorrelation function

05(7) = 6RZ;(7).
If the Uryson model has the next form

Y()= 3 [ g HZ(—9]ds+{()
k-lo

then the first order cross correlation function is

EY()H[Z(t—=9)] = [ g()k(z—s)ds = Ryg,(2)

0

and its Fourier transform is

le(co) =& (w)(p(a))
From here

2(s) = R%;Rm,(s)

where D denotes the % operator and hence

2(s) = ;‘F(R;i:-.(s)+(a2—zm,‘.2,(s)+ﬁ=R,H,(s))

We cannot get explicit expression unfortunately, for the determination of the weight-
ing function g,(s). We have to solve the following differential equation

—2aPgf? (s) —8af (B +0o*) g2(s) =
= R, (s)+(52*—8B) R}, (s) +4(o* — 22 B +4p*) RS, (s) + 1602 B2 Ry, (5)

Therefore for this case and for higher kernels as well we may apply the spectral
factorization on the basis of the orthogonality of Hermite polynomials.
Thus if we compute the Fourier transform of

R3z(s) ie. F(g"(s)) = F (o)
then with the factorization F,(w) we get that

Fo(w) = Fy (jo) Fy (jo)
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Using this result and calculating the cross spectral density function
F[Ryﬂ,.(s)] = Fyﬂ,(jw)

for fixed n we can use the linear spectral factorization procedure [5] that leads to
the determination of the transferfunction of Uryson model F[g,(s)]=G,(Jjw).

In the case of the discrete Uryson system we can the above computation in
entirely analogous way using the spectral factorization method through the discrete
Laplace or Z transformation.

Now let us try by the AR[2] the identification of the discrete Uryson system
¥, analogously to the identification of Uryson system with AR[1] input where

o= 3 3 a0 -0+
Here the difference equation for the AR[2] input process is
Z, =PhZ, 1 +PZ oty
where #,£N[0, 1] is a discrete white noise series. Let the roots of the equation
wi—Biw—f=0
be different and real numbers w;, w,. Then

1 lt—s]+1 Jr—s|+1
CO?J(Zu Zs) — J--|I—s[ = [‘vl WL ]

(wy—wo)(1—wywe) U 1—w2  1—w?
and so
l w|t—s]+l w;:—sl+1 ]
T T 1 p
coo[H(Z)H(Z)] = Ty = (w; —wo)' (1 —=wywy)' U 1 —w? 1 —wi

In this case the Fourier transformations of the crosscorrelation function

EvH(&-d) =4 wz)’(l wlug*,o(l] (T=w )(1 e

3 GG wiliH D (w00
Jﬂ

is given by relationship

s 1 1 (] wiwi~*
() = 2 G T 2 ) T ¥

X Zg!(.') Z e~k (wiwg k=l =

1 1 wiwh 1
= 2% mw = & () T (v T=—wimpre—op 0@

It is clear that from here we can get result for weighting function g,(j) in a rather
complicated way.

9
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Therefore to avoid the “difficult” spectralfactorization procedure and the above
complicated computation the authors constructed a so called semiparametric identi-
fication method of identification for not only the Uryson but even for the non-
linear system represented by Zadeh functional series using autoregressive input
process (3).

The first few Wiener G-functionals are

Golgo: x(1)] = go,

Gilgi; x0] = [ gi(s)x(t—s)ds,

-1

Galges (0] = [[ ga(sr, s)x(t—s)x(1—sp)dsydsa— [ ga(s, 5) ds,
0

0

o0 oo oo

Gslgss X1 = [ [ [ ga(s1s 5o, s9x(1—s5)%(1—52)x (1 —s) dsy dsydsy—
0o 0 0

=3 [ [ 8s(sis sy sx(t—sp) dsyds.
0o 0

Now let us first consider the n-variable Appel polynomial system (8) for the identi-
fication of the continuous Volterra-model:

1; Ao =1,
2‘ An(xli KXoy eeny xn)

is an n-variable symmetric polynomial of degree » in the variables x, ..., X,:

d
3' —_An(xl! Koy ceny xn) o An—l(xl'l xﬁ'! ssey xll—'l)’

ox,
4. EA(Xg; %3y ey Xg) = 0,

where x=(x;, x3, ..., X,) IS a vector-valued random variable with Gaussian dis-
tribution and Ex=0.

If we denote the covariance of the variables x; and x; by R,, ., then for the Appel
polynomials A4, (x) the following recursive formulas hold true i.e. 4, can be calculated
by formula:

n—-1
Au(xls sery xu) = ann—I(xh veey xn-l)— iz; inqun-il(xl.s ceey Xjm1s Xjg1s coos xu-l)-

For the second order moments of the Appel polynomial system (in the case of the
Gaussian distribution of the variables x, ..., X,, Z;, ..., Z,) We get

EAu(xla Xay 1eey xn)Am(zl'l wery zm) - 6»»1 Z* H-inzi'p
n =]

where the summation 3'* have to extend for all possible permutation iy, i, ..., i,
of numbers 1,2, ...,n (8).
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5. Identification of continuous Volterra models using autoregressive input processes

Now let us consider the identification of the nonlinear systems represented by
the Volterra functional series in the form

() = ;’f o [ 8 (510 enr SDK(t—5y)... k(¢ —5,) dsy....ds; +{ (2)

\—.r—'
i

where ((¢) additive noise is a staticnary random process independent from the
input process x(¢). This Volterra model can be described by the help of the well-
known Wiener G-functionals and using the multivariable Appel polynomial system.

In the Wiener theory the output y(¢), of the Volterra nonlinear system for the
input x(#) is expressed by the series

() = ;“' Galga, x(1)]

in which the Wiener G-functional (5) have the orthogonal property i.e.

E{Gp[gm; X(0]G,[gn, x(D]} = Sy

Naturally the Wiener G-functionals and the more general multivariable Appel
polynomial system are close relatives. If the input is a Gaussian white noise process
then the Volterra series represented by G-functional can be obtained using the Appel
polynomial form too i.e.

YO = ZGlen ¥ = 3 [ oo [ 851y s s)x (=50 x(t=5) dsy...dsi+-{ (1) =

=z f.:.' [ 8515 Angeea[X (= 50)...x (1 =5,)] dsy...ds, + (1)

There is an analogous connection between the Appel polynomial system representa-
tion of Volterra model and the Lee—Schehen L,(-) functionals when the input
is a nonwhite Gaussian process. The Wiener—Hopf type multivariable integral equa-
tions for optimal estimation of Wiener—Uryson and Volterra series we get from
the minimalization of

EpO-3 [ - [ 86u s sdAuaalx(=s), . x(t=xs)] ds...ds}?
0 0
i.e.
Ryay...(tyy s i) = f f 8(515 s S) R (ty —5))... R (1 —5) dsy...ds;
0 0

i=12,... %.4=0

The solution of this integral equations can be performed by multivariable spectral
factorization procedure given e.g. by Lee and Schelzen [9].

9s
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If the input is a continuous first order autoregressive process (a coloured noise)
with autocorrelation and spectral density functions

— g—alsl TR
Rx(s) € 2 Fx (m) ag+(og

then analogously to the identification of continuous Uryson systems we can avoid
the spectral factorization procedure.

We get the following estimation of Wiener—Uryson model analogously to the
identification of Uryson systems see in Section 2.

1=1 [l+a 05,-][ a s, ]R}’Au A0y sy ) S

" 1 9 .
o H[l ag 85 ]RyAl 1_( '“sr:)"‘g(sh---ssn)

le=1

This result we may extend in an analogous way for the case of the any m-th order
autoregressive process i.e.

4 { Y _‘_1[ Zm'c, ][]1-1—2’“'6,6,]Ry,,1 3 (Bas veey 8)

l=1

where ¢, /=1,2, ..., m are the appropriate parametres of AR(m) process.
For example if the input is an AR(2) process then for estimation of the Wiener
kernels we get that

x T 0 Py ——
861, w030 = [T (1-11 g~ gig) (1 g+ a2 ) Roalos 59

6. Estimation of Wiener kernels of discrete Volterra model with first order Gaus-
sian autoregressive input

Let us determine the estimation of Wiener kernels of Volterra model when
the input is a discrete AR(1) process. In this case the equation of the Volterra system
with Wiener kernels is

= 2 2 8lki, ks, ..., kr)All...l(zn-kp eny Zn—k,)'*'g(f)

r=0kz=0

where A4y 4, is the multivariable Appel polynomial.
Let

i = té; g(ky, ..., k) A, a(Zppys ooos Zu—p)

be an output process with cross correlation function
A “5 lit"'J.g!
R-":*)At...l e~ ké; g(kln “es k ) Z_Az)T
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where s;,...,5, is a permutation of 1,2,...,r and so its Fourier transforma-
tion is

1
K(wls Wyy cuny wr = [Z G(O)_“, bl ms,.)] r
i IT 11—~

k=1
where the summation > has to extend for all possible permutation sy, ...,s, of
rl
the number 1, ...,r.
Then it is obviously, that
e - X jko
K(w,, vy, ..., w,) = 7 12 EJ’E:))Au-nl(Zn—j: veey Lyp ) %1

furthermore e

G(wsp seey ws,.) = - Z g(kl"'kr) €xp ('""i ‘gr; klwsg)

pokp =0

Let us define the shift operator by the following way
gl*A(zn—jp very zn—jn '"!Zn—j..) = A(Zs—_h"'zn—ji-ks ---zn—j,.)
Assuming that the kernels satisfy the condition
g(k) = g(Pk)
where P is an arbitrary permutation we get for the Wiener kernels that

80 = [ (1—ia)(1~ 20 ) Eya Ay 3 (Zy-bys o Zas)

r

Now if we assume that the system is Uryson one i.e.

g(kln kls ey kr) = j{‘t 6t}gr(kl)

then for example for the estimation of the weighting function g,(k) the next for-
mula holds

g2(k) = (1+4%)*Ey, Ax(Z,- ) —2A(1 + A?) [Ey, A1y (Z k-1, Z, - ) +
+Eyi|Ali(Zn—h+1s Zu—k)]'i—j's[EynAt(zn—k-l)-I-EyﬂAn(Z -k+l)+
+2Ey, Ap(Zy—x-15 Zy—i+1))

Analogously e.g. for kernels g, ,(k, /) of Zadeh model (see later) the following
equality holds

gaa(l, 1) = gk, k, 1) = g (1= ALY(1 — AL Ey, Ay s (Zos Zas» Za-D).

The above result we shell extend for any pth order autoregressive process. If the
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stationary input series has an spectral density function s(¢’). The cross correlation
function is

EylAl...l(zl—j'J s Zyy) = 1% g (k) cov (Az...x(lc), A1...1U)) =
1 r
= S%; g(E)’ZE’F’IJ‘ r[k._—m

where
F-jy =cov(Z,-4, Z,-))

and the cross spectral density function of the autocorrelation function is

1
K(wy,...,0,) = G Z gt~ By s (2 s Zy) =

(2;}1‘ *Z:) r! g(-}’z'. ;!:I]. Z: e_‘wr,azlhl_j'l —

st P ok
= 2 2 g(’_()e a-lm" II'H. 5(9“”‘)
rl k=0 s
from where because of the symmetricity of g(k) we get that

G0y, ..., ®,) = K(ey, .... ®,) !jls(e"‘”)

where
3 ok,

G(@y,....0) = 3 gk)e T
k=0

is the multivariable transfer function of the Volterra system. This formula is very
similar to the Shiryaev formula but we use the Appel polynomials instead of the
input products.

The Shiryaev formula can be used only for the pure rth order Volterra model
though we do not take this restriction. From this formula we may get the following
special cases.

1. If the Z, i1s an AR(1) process than naturally

lr=sl
1-22

S(e®) = (2n) 1|1 —Ae~t@| 2

COV(Z‘, Z,) = r['_’l =

and so the transfer function is

G(@y, ... @) = (1Y JT |1=Ae="*P K(ay, ..., ;)

s=1
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and if we substitute e'®. with shift operator L, we get again that

g(k)= [T (1—ALY(1—L;DEy, Ay, ... 1Zsosys vvrZsos)

s=1

2. If Z, is an AR(2) process i.e.
Z, = ﬁ1zr—1+ﬁaz:—s+“¢
where #,€N(0, 1) is discrete white noise and its spectral density function is
S(e?) = 2m)~t |1 —pye~"*—Pye=2| -2

G(@y, ... ) = (20 g |1—Bye=i@—Bye=2o[2 K (e, ... ,)

from where for the determination of appropriate kernels we get the next relatively
simple expression

g(k) = ,‘ZZ (1 =Py L= B L)(1 = By L7 — B LT*) Ey Ay 1 (Zy— iy -3 Z4-,)

3. Z, is a pth order Gaussian autoregressive process i.e.

P
Z, = 1;; Bz, +e

where e, N(0, 1) discrete white noise series. Denote

- -2
S(®) = @n) 7 [1- 3 pie~*]
=1
then
G(wy, ..., 0,) = 2n) jflll" _Z’I'ﬁ,e“““]i]((wl...w,)

as well as

80 = [ (1~ ZAE) (1~ 3 Bl Ey As..aCamys - Zas)

Al. l(zl-kp seiy Zr-—k)'

7. On the relationship between the identification of Volterra and Zadeh non-
linear models

In our earlier paper using autoregressive input we discussed in detail the iden-
tification of nonlinear systems represented by Zadeh functional series.

In this part of this paper we analyse the relationship between the estimation
of Rajbman kernels of Zadeh nonlinear system and the Wiener kernels of Volterra
nonlinear model when the input is autoregressive Gaussian input process. It is
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well-known that the nonlinear system represented by Zadeh functional series is
defined by equation

¥ = f” uy(s)ds + Zn' f f, ufx(t—sy),....x(t=s), 81, ..., 8;]ds, ... ds;+ ().
0 i=1g 0

Here the Zadeh kernels u;(xy, ..., X, 51, ..., 5;) will be considered as analytical i.e.

ui(xls caey xh Sl eey si) ot kz a’_‘(sls Say eeny S‘)_J_Ck,
=1

i
where x* = JJ xf: moreover
j=1

i
({g’l k;) ai(s;, sy ly) < o

k=1

as well as the additive noise £(7) is independent of input x(7) and E&(z)=0.
Here the kernels a(s,, ..., s;) are called Rajbman kernels. For the identifica-
tion of above kernels we assume that the following equations hold true

(1) Ak (15 25 vy 8)) = @y Sy wees 15 82y 005 535 oo 3 Sis a0 53)

Ky ky Ky

where k = (ky, ... k), 1= 3 k;, D, = (11...1) and [T (s5,—s,) %0,
im=1 "‘—T"" r=p

(li) ak(sls weey si) - a;:k(!is)-

Here P is an arbitrary permutation of the elements.

Because of the weights a; are the coefficients of x* thus the above conditions do
not cause any loss of the generality.

The presented results for the Appel polynomials (in Section 4 of this paper)
hold also in the case when the variables are not different. Thus, we could get the
uni- and bivariables Appel polynomial systems as special cases [8]. For example,
the bivariable Appel polynomial A, ;(x,y) (k+/)-variable Appel polynomial, i.e.

Ak,l(x! J’) i~ Ah+l(¥s Xy euny x‘r!’ Vs ----_._]’)-
k '3

As a generalization of this we introduce the following symbol

Ah.kg. ....k,(xls seey xs T A [ ] (xl! ceny X1y °--9xs9 secy xa)'

i=1" ky ky
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For the second order moments of Appel polynomials we get

EAg, ,, ....k,(xn ---,x;)Ar,....f,(yu eny yp) =

— shtets, 1) [ ks 1 i [ * ] 1
5%"'”""{’1'!]1‘ 4! r ‘ZI My, My, ..., M, ) 2 Hcc‘y‘ g A..dp :g tq Cx‘y‘
{tL1]'=k‘ }
1;1.2,....3-1
=1 ft k k!
where m, =1,— > ji and ] e
i=1 \Ils veey Il

-

=1

Using the multivariable Appel polynomials it can be seen that the equation of
analytic Zadeh nonlinear system has the following equivalent form, i.e.

y(@) = f uy(s)ds + 2 & f f ai(Sy5 -0 5) th'(f —s)dsy, ..., ds;+E() =

i=1 tfl 0

= f y(s) ds+ 2 Z j f (s, -oos YALX(t—5)), ..oy X(E—5))dsy .. ds;+E (D).
0 i=1 k=14

i

For the renstraction of relationship between Zadeh and Volterra nonlinear models
let us consider the identification of the following fourth order Zadeh model

Y (0 =yP@+y?@O+yP0)+yP0+L@)

where the “rure” members are
YO () = f 1A (Z(t—5))ds,
YO () = f] 211 (51> SAns (Z(t—s5), Z(r—s,))ds+of” 8 As(Z(1—5)) ds,
Y- fo Bua () A (Z (=5, Z(t— s Z(t—s9)ds +
+ f:} 1, D A(Z(0=5), 2= dst [ a2 (=)

yO@ = ffff gun ()41 (Z(t -5y, ... Z(I—S,))d,s-!-fjf gn2(D41(Z(t—s) ...

oor Z(t—59))ds + f} 8a2(1, S9)An(Z (1 —5y), Z (1 —s5)d s+ f- g4()A4(Z(t—5))ds
0 0
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Here the input is a first order Gaussian process with zero expectation and the auto-
correlation R, .(¥)=e~**. Let us see first the estimation of g,.

Let us begin with the

Rya) = [ 81(Rua(u—s)ds = [ gi(s)e~*l*lds

the Fourier transformation of which is

1 o

F, 7141((0) = £ (0)F, 4141((0) =g (w) = m

from where
= (@ +0)R,1,(@) = £(@)
Applying the inverse Fourier transform we get
&(@) = = (*+D)Ry 4, (u)
where D denotes the differential operator d/du i.e.
81(4) = — (a*Rya, () + Ry, (1))

We obtain similarly to the above case for the “pure” fourth order member the fol-
lowing results

ym(,) = ffff Auu(.s)[guu(.5)4‘1_%:l Js,—sjguu@)"‘l#%:k 5si-s,6s;-s,31111(§)+

+ 05y 53 05354 05y — 53 81111 ()] A5 =WZk 53,-;,6;,.-3;81111(-5)+ffffAnu(§)81111(§)Q(§)d§
& 0

On the basis of which

Ry, (0) = f f f f R gty (8 — ) 81111 (9)Q (5)ds =
0

= [[[] 2 Rertt =) Rey (3= 1) Res (s =53 Rus (44 =51) X 112 (DO ()

¢ (Ll

and

Ry (@) =24 I:IR,,(co;)[guuQ](gJ) — [P(@)] {210 (@)



Nonparametric identification of Uryson and Volterra nonlinear systems... 139

where P(w) polinom is

P(w) = 5o ]}(a’+co’) and D, = &
o8 24«‘ i=1 ’ e 3u,- g

In this case
P(Dy, Dy, Dy, Dy) Cy 4y, () = g111:1(9)Q(5)

if m(u;—u;)#0 as well as
P(D) Craun () = gun(w)

In the special case when considering only the g.. and g, kernels we get, that

8exlity u) = 3 [[ PD)Crayy, 0)du 5 dus
=k o

and
RYM(H) = ff gz:(§)-RA=.Aﬂ(u_-s-)d§+ f g,,(S)R:_,(“—S)dS =
0 0
= Goa@)+ [ (RS, (u—s)ds
Cya, (@) = G, .(0) +£:(@)P7* (@)
where
Py(w) = ﬁ—(l6a’+w’)
from where

Gu(w) = PADIRvas )~ Pu(D) [ 3 [[ PO Rrs it ity X
0 0

X-RA"A,‘(“_ Uy, U— u,,,)du,, du,,,

We get for third order Rajbman kernels

g =
gl.2(ula u!) - lz; f P(DD D!s Ds)Cl’Anl. (ul’ Ug,s u,)du,
el

and

oo s -]
83(u) = Ps(D)Cray ()= Po(D) [[ 3 [ P(Dy, Dy, Dy)Cr.y, (1)du
o =lg

X € pypas(U— Uy, u—wu)duyduy
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Finally the second order kernels can be determine by formulas
gu (i, ) = P(Dy, Dy)Cya,, (1y, us)

gZ(u) = Pﬁ(D)CY.‘g e PQ(D) f 'P(Dl s D?.)Cl’.du(“l L] uﬁ)CAu.l’lg(u =1y U= U2)du-
0

In the above cases the following

Py(w) = 3—’; (902 + %)
n @ L)
Pg(ﬂ)) = E (41' -+ OJ')

w3 N
P(w,, 0y, ) = & n(a*+ wf)

n?
P(wy, wy) = W’T@*'w?)

denotes were used remarking that

PO o o .

7 (na)*+o?
RA,. Ag (ul B “a) b 6-Rzz (ul)Riz (“2)
RAgg Ay (ul. E] uﬂ) = 24R§z (HI)R:Z (uz)

RAuA,,(ulr Uy) = 2Rz:(u1)Rxx(uﬂ)'
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