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Abstract

In this paper we shall introduce an integral operator for representing solutions of the n-th
order partial differential equation

Wz zp.2,+C (24, o0y 2w =0

n n independent complex variables.

Introduction

Integral operators of various types have been used for a long time in the
mathematical literature. Solutions of second order elliptic and hyperbolic differential
equations can be represented by the integral operators of B. RIEMANN, I. N.
VEKUA and S. BERGMAN to mention the most popular.

In the present paper we shall introduce a new class of integral operators for
n-th order linear partial differential equations with » independent variables. These
integral operators can be seen as a generalisation of the Bergman operators for
solutions of second order differential equations with n=2 variables.

We shall consider two problems, proceeding as follows. Section 1 is devoted
to representations of solutions for equations of the form

(1 Lw =W, . +Cw=0, w=w(z,...,2) n=2,

where C is a holomorphic function of z,, z,, ..., z,. In order to obtain independent
particular solutions of (1), we represent them in the form

Q) Wz, z) = fEJ-(zl,...,z,,,r)j}[%’f-(l—13}]d1/|/(l--t3), l=j=n
Z;

fj(z;) is an arbitrary holomorphic function of z;. In Theorem 1 is shown that under
certain restrictions on E;, which is a particular solution of a certain partial dif-
ferential equation which depends only on L, (2) is a solution of (1).

Section 2 contains the corresponding proof for the existence of kernels E; as
solutions of a differential equation in the form of a power series in the variable of

* The authors are indepted to Univ. Doz. Dr. JURGEN PUNGEL for his support.



142 Kurt Walter Tomantschger and Franz Fotr

integration with coefficients depending on the independent variables zy, z, ..., Z,.
The convergence of the infinite series is proved by a slight modification of CAUCHY’s
classical method of dominants. Clearly, this process generally yields local representa-
tions of kernels and, hence, of solutions. This is said in Theorem 2.

In the last section we give examples. We shall see that operators (2) are applicable
explicitely to many equations (1) for which no representations of solutions have
been known previously. This will simultaneously motivate the new representation of
solutions to be constructed in this paper.

1. Integral operators for the differential equation (1)

For 1=k=n, n=2 let G, be simply connected domains in the complex plane.
We consider partial differential equations of the form Lw=0 where z, ...z,
are independent complex variables and C is holomorphic in the poly domain
G=G,;X...XG,cC" containing the origin. Let &;, j=1,2,...,n, oriented rec-
tifiable arcs joining t=—1 to 7r=1 and lying in the disk 2={¢/|t|=1}cC. Then
taking any function E;(z, ..., z,, ), holomorphic in GX2, and arbitrary func-
tions f;(z;) of F;={f;/holomorphicin G;30}, we can define

3) (P o Zp) = oz 0y [ (1 -] =
O Ef)enz) = [EiCa A lfi[F0-0] =

F=1, 00

Call P; an integral operator for Lw=0 if for all f;€F;
Iw = LPf; =0, P;#0,

on G. E;(z, ..., z,, t) is denoted as the generating function and f;(z;) as the asso-
ciated function of this operator. f; is independent of the coefficient C of (1). The
operators P; transform holomorphic functions into (complex) particular solutions
of the given partial differential equation (1).

Let us introduce the differential operator

D, := ig a0z, 1

i=j

[IA

Jj=n.

As a first result, we state the following theorem.
Theorem 1. Let Ej(zy, ..., z,, ) be a solution of

4) (l-+rz)D,(anlar)—%D,E,+2zjr(LEJ) = (),

such that, for z;#0,

f

yi-—-#

ij

)

D;‘Ej(zli ceey 2y t)

is continuous for t=0, and tends to zere for each (z,, ..., z,) ast approachesto *1 .
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Then, if f; is any arbitrary holomorphic function, the function w defined by
w=aw+..+a,w, where w;= P;f; (;€C)
is a solution of Lw=0 in G.

PROOF. Let z;7#0, 1=j=n, j arbitrary fixed. Writing for brevity, f; instead of
f [%zj(l —t’)] , we have, upon differentiating (3) and substituting into (1)

Lw, = f {(LE)f,+D,(E) 8f;)dz;} dt]y1—¢ = 0.

Since 9f;/0z;= —(3]}/3:)(1—:2)/22 ;1, we obtain by integrating by parts

Lw; = { 1*:=+[ e DJE”M:-[VEDJ(E,)J{,]_

The desired conclusion now follows from the hypothesis made about (5) and the
fact that f; is an arbitrary holomorphic function of one complex variable in G;
including the origin. Q.E.D.

w;=P; f; is continuously dlﬁ"erentlaung n times in z;=0 and so satisfying
equation Lw;=0 also for z;=0, j=1,2,.

Without loss of any generality E; can bc considered as an even function of ¢
as can be seen from (3). So E;(z, ..., z,, ) may be replaced by its even part
[E) (21, e Zps )+ Ef (225 ooes 2y —t)]/2 in (3). Hence, instead of (2) resp. (3), con-
sider

+1

= 0.
 §

1
w; = 2! Ej(z15 .05 2,5 Of; [_22!. (1 -;2)] dt/y1—1.
gat

Then, for z;#0, the transformation o¢;=z;(1—1¢%), i.e. t=y(z;—o0,)/z; carries
equation (3) over into

: zf;"f] fi(0,/2)da |V a,(z;—0)).

X
Wj = f Ej [Zl, vees Zps .v
0

Now, easily can be shown that

zZ;—0 o
Wi(z1, ..., 2y, 05) = [zl,...,zml/ JJ/V j
Zj Zj—0;

is a solution of (1) containing a parameter a;.

At first glance it might appear that the problem of representing solutions of
the form w;=P,;f; has been made more difficult because we must solve now a
partial differential equation in n+1 variables instead of n. But this is misleading
since only one non-vanishing partial solution of (4), which is satisfying (5), is needed
to construct infinitely solutions w;=P,; f;
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2. A constructive existence proof for the generating function E;

It had been shown in Section 1, that (3) represents a solution of Lw;=0 if a
solution E; exists to (4).

For obtaining solutions of the generating function equation (4) we construct
solutions in the form of infinite series. Their convergence we show by using a modi-
fication of CAUCHY’s classical method of dominants. In this way we shall obtain
local solutions of Lw=0, in general.

We seek a solution E; which possesses the form

(6) Ej(zls cees 2y f) =1+ Z p}:ﬂk(zl’ ...,Z,,) tn! 1 -éj =n
k=1

for (z;, ..., 2,)€G:={(zy, ..., z,)/|z] =a,a=0, 1 =i=n}cG. The {pj.mlens =1, ..o 7,
are sequences of holomorphic functions in G defined by the recurrence formulas

2k+1
2

By solving (7) we can choose the arbitr. integration functions to zero. The recurrence
formulas are obtained by substituting the series (6) into (4).

()

Dij;enz = (ij_sz)Pj;ﬁk'! j = 152! ceny My k= ls 23 vene

Remark. 1f E; possesses the form (6) the function (5) is continuous for 7=0.
Then #Z; can pass though the origin of the z-plane.

Theorem 2. Suppose that the coefficient C(zy, ...,z,) of the equation (1) is a
holomorphic function in the poly domain G3(0, ...,0). Then exists a generating func-
tion Ej(zy, ..., z,, 1), j=1, ...,m, t, n=2, according to (6) which is holomorphic in the
neighbourhood of the origin.

Proor. The existence of a kernel E; which we can calculate by a constructive
method is realised if we can show the holomorphy of series (6).
Let us introduce the operators

n Zj
Jyi=JIJ; (iF)(21,-2) = [ F(z1yoenliyoenz)dty, 1=j=n.
‘ﬂl 0
iwj

In addition, we set

(3) D;ipja(z1s -5 2) = z} Pjo(Z1y oes Zn)-

Then (7) implies
2k+1 -0 .
_-2__Pj:2k+2=Fz"i_Pj;2k-C‘Jj(Pf;2k)! IEJ_S._", k=1.

The arbitrary integration functions we defined by zero. Finally we can start to show
the uniformly convergence of series (6).
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We can verify that if C(z, ...,z,) is holomorphic in the poly disc G then in
G*:={(z,5 ---» z)/|z;i|<a, a>0, 1=i=n} holds

1C(zsls oons 12| = MS(zils oo 12y S(21sornr 2) = jl (1—z/a),

where M =0 is a suitable choosen constant. Furthermore, we introduce dominants
ﬁj;&k(zls e il | n) fOl' P};z.t(zn sevy Z,,)., i'e‘! IPJ;Zk(lzlls viey lznl)i éﬁj;u(lzlls vy Iznl)!
as follows

(10) P.,=2NS, N=M

2k+1 0 =
2 Pj;a.'.g — 32—-‘Pj;2*+NS' J(Pjizk)’ k = ]..
J

For proving the convergence of the majorant series £; for (6)
Ej(zl, vees Zpy f) =1 + Z Z? Pj;u(zl, seny Z“)f2k
k=1

we setl)
2“_1 Zj il
(ll) Pj;n(zl, ...,Zn) = 1-3.5 .(2k—1) (l—-a—] Qj;zt(zl, weey fj, vesy z,,), k= 1.
If we substitute (11) into (10), we find that
(12) Qj;ﬁzzNTji Tj(zli'"’f_b'"’ Zu)z(l-zj/a)s(zls---s zn)

Qjiok+e = %Q,;n+NT_,-JJ(Q_,m), k=1
Furthermore, if we use
(13) [J;Qj:atdzﬂ: cors 124l5 oo |zn|)| =Quullznl, -zl o lzil), k=1,
in the recurrence formula (12) we obtain
(14) Qjiallzl, .o 124, s 124]) < 2N

k+aN
al;t

Integrating (8) (set the integration functions to zero) and applying the inequality
(13) with the integrand P}, to our integral yields

1Psa(215 005 2)| = [zjlkle;Sk(]zlls o lZDls k=1,
From (14) and (11) we obtain for the dominants of P,y
Pj:ﬂ(lzll! sees |zn!) = ZN/(I _Izj]/a)

*.(k—1+aN)k—2+aN)...(1+aN)N
i (3 7 S (P Ay

Q};ﬁ+2(]zl.ls Al ] |2j|! L ! Iznl) = Qj;ﬁ(lzll! gt |fj|$ shay |znl)! k = I'

, kE=m2

1) Z; means that z; does not appear in Q.01 (21 - Z0)-
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The majorant series
Ei(1z)l, ...s 1z, 12]) < 142N |2/(1 — | zjl/a) +

aN 2k—1+aN)(k—2+aN)...(1+aN)N
(-lzjla) &2 S**(lzil, ..., |z)1+3-5...(2k—1)

converge for |z;|<a, 1=i=n, |t|=1. Note that E; does not depend on the pathes
of integrations in (9).

The series (6) are therefore absolutely and uniformly convergent in |z;]|<a,
1=i=n, |t|=1. But uniformly convergent series of holomorphic functions are
holomorphic; hence the series (6) represent a holomorphic function. The existence
of a solution of (4) in the neighbourhood of the origin is therefore proved.

|72

+

3. Examples

In Example 1 we consider equation Lw=0 with
C(z;,...,2)=—A/H", A€C, H=z;4...+2,7#0 in G.

Now we want to determine E;(z, ..., z,, t) according (6). With (9) we can cal-
culate the P;,,;, successively for k=1, 2, .... We obtain

2k).H-n—k+1 [ _nl! 11 ] =1
P =S k=1 .H ”+I+(n+l 1)1“1 kil [JIw=t

i=0

This relation can be proved by induction with respect to k. Integrating (8) yields

pj:!k(zls dusy Hgd zﬁjj(Pj:Qk)
In this way we get

- o1y w2 k! k—D!H —1)"-1it
EJ(zla--wzrlst)—l‘i‘(_l) llk%;. (2!\.)’(”‘*“\. 2)| "j ‘=0[ +1+"""‘;‘:'1—)‘TA]]‘“

which is convergent for |z;|<na.
As breaking off condition for our series E; we obtain

A=(-D)-(n+k=1D)(n+k-=2)...k.
Example 2.
st K (2K (2D ... Ky (z)w =0, KiK;..K;#0in G, w=w(z,..,2).

This equation may be simplified by the variable transformation z;—K;(z)), 1=j=n,
v(Ky(zy), .- K (a,,))_u(zl, vees Zp), to the form

3"v/8K1 ..0K,+v=0;

consequently, we investigate this equation.
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As before we may find the kernel. We then have ¢;(Kj,...,K,, )=
=E;(z,, ..., z,, t) and the following generalised hypergeometric series

eJ(Kl, sssy Kll'l f) - UFB'I [_;‘, 1, 1, very 1; —12K1Kg s Kﬂ]'
“After formula

ej(Kl, sery KII’ r 3 DEI"I ["%", l, 1, - _InKle.uKn]

the following text should be printed:”

Note that in the representation formula (2) the variable z; of the arbitrary
holomorphic function f;(z;) has to be replaced by K;(z,). So Q =, x...x2,3(0, ..., 0),
where Q;, which is the range of values of X, is a simple connected domain in C.
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