Direct products and monomial characters

By ROBERT W. van der WAALL (Amsterdam)

All groups in this paper are finite. We assume known some notions in the
representation theory of groups, such as primitivity of characters and of its utmost
opposite, viz. monomiality oi characters. The notation is that of Huppert’s book
[3] and Isaacs’ book [4].

§1

At first we introduce certain classes % and " of groups and then we state
our problem area to be treated here.

Definition 1. Let % be the class of groups consisting entirely of those groups
G containing some N<aG with G/N nilpotent and with the Sylow p-subgroups of
N abelian for all primes p.

Definition 2. Let 2 be the class of groups consisting entirely of those groups
G# {1} which have all their maximal subgroups contained in %. Put & ={1}U x3;
whence LS.

Examples.

The alternating group A4; is a member of .

All nilpotent groups are members of .

All Schmidt groups T (i.e. T is not nilpotent but it has all of its proper sub-
groups nilpotent) are members of A

The symmetric group S; is a member of 2.

The group SL(2, 3) is a member of ) but not of . [

The central topics in the representation theory (and character theory) of groups
are undoubtedly primitivity, induction, restriction, monomiality in connection with
Clifford’s theorem. See [4], Chapters 5 and 6.

In this paper we are given a group G which is an (internal) direct product of
the subgroups N and H. Hence G=NH, NN H={1}, N=G, H<G. In his paper
[1], N. S. HexsTeR proved that y€Irr (G) is a primitive character if and only if
the irreducible constituents of yy and yy are primitive characters. One may con-
jecture that yx€Irr (G) is monomial if and only if the irreducible constituents of
xy and yy are monomial. We give in § 3 an affirmative answer to the conjecture
when NecJX'. As the reader will observe, the following ingredients are already
used in that case, viz.
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1) groups of central type are solvable ([2], Theorem (7.3)),

2) the theory of character triples ([5], Theorem (8.2)),

3) a theorem of A. Parks: Let T'be a group, M =T, Mc¥. Suppose xclrr (T)
is monomial and let { be an irreducible constituent of y,,. Then the so-called
Clifford correspondent of y over {, y,, is monomial ([6], Theorem 3.1).

There is also an affirmative answer to the conjecture when (u(1), v(1))=1, where
u is the (unique) irreducible constituent of yy, and v that of .

Now, in trying to reduce the general case of the conjecture via a hypothetical
counterexample G of smallest order, I was able to derive that the subgroups N and
H had to be solvable, having all their abelian normal subgroups cyclic and central,
while N and H were also of central type.

§2

After these hopeful events the progress in the argumentation stopped. No
wonder, because the obtained configuration leads very quickly to the existence of
a group T, being an internal direct product of two isomorphic copies of a group S,
say T=S,S,, an irreducible monomial character x€Irr (7)), yxs,=eq; (i=1,2),
e=0,(1)=0,(1)=|S/Z(S)|"?, @:€Irr (S;) (i=1,2) (whence S is of central type),
the ¢; being non-monomial characters. The final touch of this phenomenon is
due to E. C. DADE, written in a letter to the author dated August 25, 1985. More
precisely we have

Theorem 1. Let T=S,S,, $y<aT, S.<T, S;NS;={1}, S;=S,. Let a be an
isomorphism of S, onto S,. Let Z(S,) be cyclic, #{1}. Let 2, be a faithful linear
character of Z(S,). Assume there exists ¢,€Irr (S;) with @ylzis,y=|S/Z(S)"*7,
(whence also 251=|S,/Z(S,)|'?@,). Define @,(x(s))=¢,(s) ( =the complex conjugate
of ¢y(s)), for all s€S,. Then @,clrr(S,) and §0a!z(s,)=lszfz(52)ll‘!2)-z, Agr=
=|8./Z(Ss)|"* @y, where iy is the faithful linear character of Z(S,) determined by
Aa(2(2))=4,(2), for all z€Z(S,). Then there exists a unique y€lIrr (T) such that
xs,=Pa(1) @y, xs,=01(1)@s. This x is a monomial character.

Proor. We have Z(T)={uv|uc Z(S,), v€Z(S,)}. Further yz1\=|S,/Z(S)l/=
=|T/Z(T)|**A, where A is the linear character of Z(7I) defined by A(w)=
=4 W) -4 (2~2(v)), ucZ(S,), v€Z(S.). In particular x(1)=|7/Z(T)** and so
A =|T/Z(T)|"*x=|5,/Z(S,)| 2. We have here that y(¢)=¢,(a)@.(b) with t=ab,
acS,, be S,. The set S, defined by S={sx(s)|s€S,} is a subgroup of T’ with §;=
= 8,2 8. So, as ¢, is zero outside Z(S,) and as @, is zero outside Z(S,), it follows
that Ker y=Ker A=SNZ(T) just by the faithfulness of 4,. Moreover SNZ(T)=
=Z(S). Hence there exists a linear character u of SZ(T') such that ug=1g and
Hzay=4. We calculate u”. It follows that any irreducible constituent of u” is equal
to some irreducible constituent of AT=(AS#M)T=(u+...)T=uT+.... Therefore
immediately uT=fy, for some positive integer f. Counting degrees we see that

u'(1) = IT: SZ(T)| = |T|Z(TISZ(T)/Z(T)} = |T|Z(T)\/|S/Z(S)] =
= |S/Z(S)| = x(1).

Hence y=u” and so x is a monomial character. [
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From the theorem just proved, it follows that, in order to disprove the con-
jecture, we only need to construct a group S satisfying

1) S has cyclic center Z(S)#= {1},

2) A€lrr (Z(S)) is faithful,

3) A5=|S/Z(S)'"* A, Aclrr (S), Azs=|S/Z(S)|'*4,

4) A is not monomial.
Now put E,=extra special 7-group of exponent #, 7 odd prime, |E|=t>

Example (E. C. DADE). Let p, g, r be three distinct odd primes with g=r=
=—1 (mod p). Consider the internal direct product E E, of E, and E,. Then
there exists a semi-direct product S=(E E,)E, such that E,=Cp (E)Cg (E,)
and Z(E,)=Cg (E)NCg,(E,), and E,/Z(E,) and E,/Z(E,) are irreducible E,-
groups. The center Z(S)=Z(E,)Z(E,)Z(E,) is cyclic of order pgr. Thus there
exists at least one faithful linear character A of Z(S). There is a unique irreducible
character ¥ of E,E, lying over Azg,z,) With ¥(1)=gr. So ¥ is inert in S. As
(IE,l, |E,E,|)=1, it then follows that i has an extension ¥ to Irr (S). There exists
also &elrr (S) with {(1)=p such that Czg,=7zg, and Ker {=E E,. From
corollary (6.17) of [4] we conclude that YE€Irr (S). Write A=y¢. Hence Ay =
=pqri=|S/Z(S)[*?/.. This implies that /5=|S/Z(S)[*/* A. The character A is not
monomial for there is no subgroup M of S with Z(S)cMc S for which |S: M|=
=pgr. This follows from the choice of the primes p, ¢, r in connection with the
well-defined action of E, on E E, inside S by conjugation. [J

§3

In this section the group G is the (internal) direct product of the groups N
and H, whence N<G, H<G, NH=G, NN H={1}. Note that nh=hn for all
heH, neN. Let y€Irr (G). Assume that v is an irreducible constituent of yy and
that n is an irreducible constituent of y5. It follows from Clifford’s theorem that
%y and yy are homogeneous, hence that yz=v(l)y and yxy=n(1)v. We prove
now a sort of a rehabilitation to the (negative) result of the second section.

Theorem 2. Using the notations and hypotheses just given and assuming in addi-
tion that N€X', it holds that y is a monomial character if and only if n and v are
both monomial characters.

Proor. If n and v are both monomial then it follows that y is monomial. Indeed,
1=9®1, where ficlrr (G) is the character of G, well-defined by #(mh)=n(h),
(€N, he H) and analogously 9?(nh)=v(n) defines 9€Irr (G). As 9 and # are both
monomial, ¥ is monomial too.

So conversely we assume from now on that y is monomial. Hence there exists
a subgroup T of G and a linear character A of T such that A°=y. Assume T#G.
(Otherwise n and v are both one-dimensional monomial characters). Let M be a
proper maximal subgroup of G containing 7. Then write ¢ =4 and so ¢ is mono-
mial and ¢%=y. There are three cases to be considered.

%) NSMcG,

B) HEMCG,
7) MN=G=MH.
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Re o) Let NS M G. Notice MH=G and consider M H. As NN(MNH)={1}
we see by counting orders that M=N(M(\H). Since [MNH, N]={1}, we have
M H<=M. 1t follows from the character theory of direct products that ¢y=¢(1)o
and @yng=0(1)e for some g€lrr (MM H) and o€lrr (N). But yy, being homo-
geneous, has v as its unique irreducible constituent, whereas (yy, 6)=(y, 0% =
=(x, (™)) =(1, 9°)=(x, x)=1. Hence o=v. By induction on M, seen here as
direct product of N and M\ H, we can require that the monomiality of ¢ implies
that v and ¢ are both monomial. Now Mackey’s theorem can be used ([3], V.16.9)
and this yields ¢%|z=v(1)n=(¢xna)T=0(1)o"=v(1)o". Hence n=p" and thus
n is monomial.

Re B) Let HEMcG. Notice MN=G and consider M[IN. Therefore, as
HN(MNN)={1}, we see by counting orders that M=H(M\N). As [MNN, H]=
={1}, we have MNN<M. It follows again that @z=7(1)é and @uny=05(1)y
for some yelrr (MNN) and &cIrr (H). But yy has 5 as its unique irreducible
constituent, whereas (xg, 6)=(%, 6°)=(z. (6™)%)=(x, n%)=(x, x)=1. Hence d&=n.
Now M is the direct product of the groups M(IN and H. Observe that here
MNNeZ<SH. Hence by induction d=# is monomial. Since ¢@%|y=n(l)v=
=(@uny)¥=0(1)y"=n(1)y", it follows that v=y" and so v is monomial.

Rey) Let MN=G=MH. Since H centralizes N it follows here that M N=
<tMH=G. Let § be an irreducible constituent of Punn- We will argue that it
will be sufficient to assume that @umny is homogeneous, i.e. that y is inert in M,
For let U=Iy(¥), the inertia group of ¥ in M, and let a€lIrr (U) be the unique
character such that «=¢ and (ayny,¥)=1. (The knowledge of the existence
of such a Clifford correspondent @y =aclr (U) can be found in [4], (6.11)). Hence
1=¢%=()=a® Now « is monomial as ¢ is, just by Parks’ theorem 3.1 in [6],
applied on the group MNEZ as normal subgroup of M. Then put S=UN and
{=05, whence { is monomial and {®=(a%)®=(a™)®=y. Now, if S is a proper
subgroup of G, we can find a maximal subgroup M of G containing S, and we can
find the monomial character {™ with ({™)®=y. So then we have reduced the problem
to the case «). Thus we may assume that S=G. Hence |U/(MN)|=|U(UNN)|=
=|UN/N|=|G/N|=|MN|N|=|M/(M(N)|. So U=M and ¢ is inert in M. In
that case v is inert in MH=G, as H centralizes M\ N. Therefore we may assume
from now on that @, ny=ey, some integer e=1, and that ¥ is inert in N.

Any normal subgroup of N is already a normal subgroup of G, by HEC;(N).
This fact combined with G=MN implies that N/(N(1M) is a simple group
#{1}. The theorem of Mackey yields yy=¢%y=n(1)v=(@xny)"=e¥". Since

n()=(n(1)v, v)=e(@", v)=e, it follows that e divides 7(1). Therefore q(e ) =y¥,
We saw above that we work with the assumption that ¥ is inert in N. This means
that v,y is homogeneous as M N<aG and (vyny, ¥)=(v, Yy V)= —= "(1) =1. Hence

v is fully ramified over MNN. In particular |N/(NNM )]=(q(l)/e)2 The triple
(N, NN M, ) is then a so-called fully ramified character triple. It follows from
Isaacs’ theory of these triples ([5], (8.2)) in connection with the fact that groups
of central type are solvable, that N/(N(1M) is a solvable group. See here [2] for
details on groups of central type. Thus the simple group N/(N(M) is solvable and
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so cyclic of prime order. This contradicts |N/(N(M)| being a square and so the
proof of Theorem 2 is complete. O

Next we prove

Theorem 3. Let G be a group with G=NH, NNH={1}, N<G, H<G. Let
2€lrr (G), velrr (N), nelrr (H) for which yy=n(1)v and ygp=v(1)n. Assume that
(v(1), n(1))=1. Then y is monomial if and only if v and n are both monomial.

PrOOF. Just as before, if v and n are both monomial, then y is monomial. Now,
in about the same way as in the proof of Theorem 2, we may assume that, if y is
monomial, TN=G=TH holds for any subgroup T of G for which there exists a
linear character 4 with A%=y. Of course, in the reduction process the condition
(«(1), p(1))=1 has to be taken into account for appropriate irreducible charac-
ters « and B of certain subgroups of G. Now we reduce {urther. Note that we can
assume that N {1}.

Take such a T and linecar A€Irr (T) with A®=y. Let X=Kerv. As yy=
=n(1)v, we have X<aG and XSKer 7. Then G/X is the internal direct product
of the groups N/X and HX/X. Applying induction it follows that we may
assume that

(1) v is a faithful irreducible character of N.

Next we see that

(2) TNN=Z(N).

Indeed, TNN<TH=G, whence T(IN=<N and then Arny is inert in TH=G.
Hence vyny is a multiple of Arny. Since by (1) v is faithful, this implies TNNE
CZ(N). Now, if TNN#Z(N), then (Arny)" is not the multiple of a single
irreducible character of N. On the other hand A%|y=yy=7n(1)v and 2%|y=(rny)".
Hence TNN=Z(N). In fact we just showed that N/Z(N) is a fully ramified
section and so, as (Azu)Y=(ray)"=A""y=xy=n(1)v and vzx=v(1)4zm), it
holds that

€) |N/Z(N)|=q;(1))ﬂ=(n(1))=.

Hence, as (v(1), n(1))=1, this leads to x(1)=n(1)=v(1)=1 and it is clear now
that we have proved Theorem 3. O
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