Some theorems on wreath products

By L. G. KOVACS (Canberra)

1. Discussion*®)

The Embedding Theorem constructs, for each group G and each subgroup H
of index n in G, embeddings ¢ of G in the (unrestricted, permutational) wreath
product H Wr S, of H by the relevant symmetric group. Such wreath products
have a functorial property which gives for each homomorphism o: H—~A4 a homo-
morphism « Wr S,: HWr S,~4 Wr S,. The composites at of ¢ and aWr S,
are of fundamental importance. For example, if n is finite and A4 is a general linear
group, GL, say, so « is a linear representation of H, then «t (composed with the
obvious inclusion of GL, Wr S, in GL,,) is the induced representation of G. In
this sense at least, the Embedding Theorem goes back all the way to Frobenius.
(For recent expositions, see § 5 in Cossey, KEGEL, KovAcs [1] and § 4 in ROBINSON,
WiLsoN [4].)

The first question considered here is: how does one recognize whether a homo-
morphism G-—H Wr S, is one of the embeddings given by that Theorem? What
distinguishes these embeddings from others?

Towards an answer we must emphasize first that the Theorem gives not just
one embedding buta whole lot: one for each of the | H|" transversals of H in G. Second,
the symmetric group which really occurs in the Theorem is that acting on the set
of all cosets of G modulo H, while the functorial view demands that we think of S,
as the symmetric group on some set given without reference to G or H: so we have
to choose one of the n! possible identifications of these two sets. All told, we have
n!|H|" options. It is not hard to see that the resulting embeddings differ precisely
by inner automorphisms of the wreath product: if we let Inn (H Wr S,) act on
Hom (G, HWr S,) by composition, they form a single complete orbit of this action.
(In general, there are some coincidences so we get fewer than n!|H|" distinct embed-
dings: we shall return to this point later.)

More notation is needed before we can proceed. It will not be assumed that
n is finite. Throughout, I shall denote a fixed set of cardinality n, and for emphasis
we shall often write S; rather than S,. The wreath product 4 Wr S; is the semi-
direct product of S; and the group A’ of all functions /—A. [Permutations and

*) A condensed, preliminary version of this paper was presented at the International Col-
Ioquium on Group Theory held in memory of Tibor Szele (1918—1955) at Debrecen (Hungary),
16—20 September 1985.
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functions will be written on the left and composed accordingly. The action of S
on A’ is defined in terms of this composition but written exponentially: so

fP(i) = f(pi) whenever fecA', p€S;, i€l]

The natural projection of 4 Wr S; onto S; will be denoted = (or =4 when a distinc-
tion appears necessary). Given W=A4 Wr S; and an { in /, the elements pf of W
such that pi=i form a subgroup, W, say, which has an obvious direct decomposi-
tion AX(A4A Wr Spyy): the corresponding projection W;—A, pfi—f(i) will be called
7; (or n# when appropriate). [Homomorphisms will be written on the right and
composed accordingly.] The answer to the recognition problem above may now be
expressed as follows.

Theorem 1. 4 homomorphism ¢@: G—-W=H Wr S; is one of the embeddings
given by the Embedding Theorem if and only if

(a) Gor is transitive (as subgroup of S;), and
(b) there is an element 0 in I such that
(b1) the stabilizer of 0 in G with respect to the permutation representation
on is H, and
(b2) the restriction @|: H—~W, followed by n, is an inner automorphism
of H.

It must never be forgotten that here W is the group concretely constructed
above, with a distinguished copy (the “top group”) of S; and a distinguished copy
(the “base group”) of H' as semidirect factors, and equipped with = and the =;.
Changing to a different wreath decomposition of this group may easily spoil the
result. For example, let G be a nonabelian group of order 6 and H a subgroup of
index 3 in G. Then the base group has two conjugacy classes of complements in W,
one being the class containing the top group; it is easy to verify that the relevant
embeddings are precisely those whose whose images fall into the other class. This
illustrates the sensitivity of Theorem 1 to the slightest change in the wreath decom-
position: one cannot even replace the top group by another (nonconjugate) com-
plement of the base group, without upsetting the conclusions.

This recognition problem has an obvious variant: given a homomorphism
y: G~W=AWr S;, how can one tell whether y=at for some suitable «?

Theorem 1’. Let y: G-W=AWr S; be any homomorphism. There is a sub-
group H in G (of index equal to the cardinality of 1) and a homomorphism o: H—~A
such that at=y (for a suitable identification of 1 with the set of the left cosets of G
modulo H, and for a suitable transversal of H in G), if and only if

(a) Gym is transitive (as subgroup of S;), and
(b) there is an element O in I such that

Gy = (GYNWy)my Wr S;.

Of course here (GyN Wy)m, Wr S; is thought of as a subgroup of 4 Wr §;
[embedded via f Wr S; where f is the inclusion of (Gy Wy)n, in A]. Note that
(a), (b) do not involve y directly, only its image Gy. Also, once (a) is assumed, the
inclusion in (b) holds either for all elements of 7 or for none at all.
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The second question of this paper also comes in two versions. One, what is
the cardinality of the set of all embeddings ¢ constructed by the Embedding Theo-
rem for given G and H? The discussion above leads to the conclusion that it is the
index in H Wr S; of the centralizer Cy(Ggp) of the image of any one of these
embeddings, so the real question is to determine Cy (Go).

Theorem 2. Let H be a subgroup of index n in a group G, and ¢: G—-W=
=HWr S, any one of the embeddings given by the Embedding Theorem. Then
C,(Go)=Cs(H). If G is finite, the number of distinct ¢ of this kind is therefore

(n=D!H|""G:Cg(H)|.

The second version asks: given G, H, and a: H—+ A, what is the cardinality of
the set of all homomorphisms «t: G—~A Wr S, “induced” by this «? An argument
similar to the discussion above yields that it is the index in W of any one Cy(G(at)),
except that W must be taken as (Hx) Wr S,, notas A Wr S,. In place of C;(H),
the answer will involve the subgroup Cg(H/ker o) defined as the set of those ele-
ments g of G for which the mutual commutator [H, g] is contained in ker a: that
is, those g which normalize both H and ker #, and whose (conjugation) action
on Hjker « is trivial. Of course when A=H and « is the identity map, this is just
C;(H), and the «t are just the ¢ of Theorem 2. That result is therefore a special
case of the following.

Theorem 2'. Let H be a subgroup of index n in a group G, let o: H~A be a
homomorphism, and ot: G—+~AWr S, any one of the homomorphisms induced by «a.
Set W=(Hx) Wr S,: then Cy(G(at))=Cq(H/ker a)/ker a. If G is finite, the num-
ber of distinct «t induced by the given o is

(n—1)! |Ha|"|G:Cs(H/ker a)|.

It may be worth noting that the proofs of Theorems 2 and 2’ yield explicit
isomorphisms, not just the existence of isomorphisms.

2. Proofs

Theorems 1 and 1” depend on the answer to a related question: how can one
recognize whether two homomorphisms 7,y: G-W=A4 Wr S; are the same up
to composition with an inner automorphism of W? In turn, this is an extension of
the familiar question: how can one recognize whether yr and y’xn are equivalent
as permutation representations G—S;? The answer to that is of course classical,
the essential case being that of transitive representations. Accordingly, let us narrow
down our question: after correction by an inner automorphism of W induced by
an element of the top group S;, we assume that yz and y’ 7 are equal and transitive,
and ask whether y and y” differ only by an inner automorphism of W induced by
some element of the base group A'. The answer is: if and only if (y{)7, and (y'})=,
differ only by an inner automorphism of 4. Here 0 is any element of 7, and y4, '}
are the restrictions of y, y’, respectively, to H—W, where H is the stabilizer of 0
with respect to yn. This is contained in the Uniqueness Theorem of [2], which may
be conveniently paraphrased as follows.
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Uniqueness Theorem. Let y and y" be homomorphisms of a group G into a wreath
product A Wr S;, such that yn=y"n and Gyn is transitive as subgroup of S;. Consider

F={feA"|y = y(inn f)}
= {fed' | gy’ =~ (g))f for all g in G},
B = {beA| (y"mo = (y4)m (inn b)}
= {b€A| hy'ny = b~ (hyny)b for all h in H}.
Then ny, maps F one-to-one onto B.

Addendum. The inverse of this bijection may be described in terms of a trans-
versal of H in G but is of course independent of that. To each i in 7 choose a ¢; in
G such that (#;y7)0=i [equivalently, (#;7"n)0=i]. Write #;y as p;f; with p; from
the top group S; and f; from the base group A’; similarly, set 7,7’ =p;f{. The inverse
bijection maps an element b of B to the element f of F defined by

f() = £,(0)bfy (0)~* forall i in I

Proof of Theorem 1. The “only if” claim comes straight from the proof of
the Embedding Theorem and we shall not spell it out: the reader can easily elaborate
details from the sketch given on p. 216 of [1]. Take 0 as the element of 7 identified
with the trivial coset of H in G; the inner automorphism of H in question is induced
by the representative of this coset in the transversal chosen.

For the “if” part, suppose (a) and (b) hold; let 7, be an element of H which
induces the inner automorphism (¢})n,. For each i in I other than this 0, choose
a f; in G such that (#,¢n)0=i: this gives a transversal of H in G. Identify I with
the set of the cosets of G modulo H by matching each ito #;H. Let ¢” be the embedding
constructed with this choice of transversal and identification. It is obvious that
pn=¢’n and that (¢})m,=inn t,=(¢"})m,. Invoke the Uniqueness Theorem with
@, ¢’, H in place of y, y°, A4, noting that now 1€ B: hence F is also nonempty. Take
any fin F: then ¢=¢'(inn "), and of course ¢’(inn f~?') is just an embedding
constructed from a different transversal [namely, from that with 7,f(i)™* in place
of #;]. This completes the proof of Theorem 1.

Proof of Theorem 1°. For the “only if” part, we have to show that (a) and
(b) hold when y=uat. Let at=¢(x Wr S;) witha ¢: G—~H Wr S; given by the
Embedding Theorem, and 0 an element of I such that (bl) and (b2) of Theorem 1
hold. The proof depends on the fact that = and =, are “natural”. To express this
we now distinguish n¥ from n4 and =f from =g, but simply keep W and W, for
the domains of 7# and n§, leaving the domains of 7 and =}/ unnamed. The naturality
of = means that (x Wr S;)nt=x¥; this yields that G(at)nt=Ger®, so G(at)n?
is transitive by (a) of Theorem 1. The naturality of 7, means that ((x Wr Sp)i)ng =
=nga for the relevant restriction (x Wr S;)}: this yields that

(@t)ng = (@) ((@WrSi)ng = (ph)nga.

As H(pi)all=H by (b2) of Theorem 1, we have H(xt})nd=H(¢})nlfo=Hx. Of
course H(at})=H(xt), while H(at)n*=Hen" and (bl) of Theorem 1 give that
H(at)=G(at)N W,: hence by the conlusion of the previous sentence Ha=
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=(G(at)N Wy)ng. In view of G(at)=(H Wr S;)(« Wr S;)=(Ha«) Wr S;, this proves
the inclusion claimed in (b).

The proof of the “if” claim depends on the Addendum to the Uniqueness
Theorem: so assume (a), (b), and define H as the stabilizer (with respect to the
permutation representation yn4) of the 0 of (b), so Hy=GyN W,. Define a: H~A
as (y4)ng; the inclusion in (b) may then be written as Gy=(Hx) Wr S;. By (a),
to each i in I one may choose a f; in G such that (f;y74)0=i, and these form a
transversal of H in G. Define y” as «t formed with respect to such a transversal and
the matching identification of i with #,H, for each i in 1. Elaborating this definition
of 7’ shows that (gy’'n*)i=j means gt,H=t;H; by the definition of H, this is
equivalent to ((g7;)yn*)0=j. It follows that yn4=y"n4. Define f; and f;’ as in
the Addendum. We have seen that Gy=(Hx) Wr S;: hence f;€(Hz)". Similarly,
Ji€(Hz)" because by its definition y” factors through « Wr S;. Let ¢ be the em-
bedding G-~H Wr S; used in forming «t: we know from the proof of Theorem 1
that (@{)nf=innt,. As m, is natural,

(' = (@) (@WrS)i)ng = (ei)rge = (inn to)x = afinn 1,2) = (y4)7g (inn 75 2).

In terms of the Uniqueness Theorem, this means that 7 x€B; hence by the Adden-
dum the element f of A’ defined by

f() = £i(0)(t,2) /7 (0)~* forall iin I

lies in F: that is, y=7’(inn f~*). From the foregoing we see that in fact f(i)c Hx
for all i, so f~1€(H«)!. It follows that composition with inn f~1 merely changes
y" to an ot defined with reference to a different transversal. This completes the
proof of Theorem 1.

Theorems 2 and 2’ depend on the other result from [2] as strengthened in [3].
The relevant part may be paraphrased as follows.

Centralizer Theorem. Let y: G—-~W=AWr S; be a homomorphism such that
Y7 is a transitive permutation representation; let H be the stabilizer in G of some
point, 0 say, of I; and let S denote the image of H in the (external) direct product
GX A under the embedding given by h—(h, hyrn,). Then there is a homomorphism
of NG« 4(S) onto Cy(Gy) with kernel S.

(Strictly speaking, the statement in [3] deals with the image R of Hy in GyXA4
under hy—(hy, hyn,), and gives an explicit homomorphism ¥ of Ng,x 4(R) onto
Cw(Gy) with kernel R. Since S contains the kernel (ker y)X1 of the homomor-
phism X1 of GXA onto GyXA and S(yX1)=R, the composite of X1
and that y will serve in the present version.

We have already noted that Theorem 2 is a special case of Theorem 2’. For
the proof of the latter, one may assume without loss of generality that 4= Ha,
and then W can be thought of as 4 Wr S;. Further, once ais given, the isomorphism
type of Cy(G(xt)) is independent of the choice of «t, so we may as well take
an of defined with reference toa transversal in which the trivial coset is represented
by 1, and to an identification which matches that coset to 0. We know from (a)
of Theorem 1’ that («t)a* is transitive, while the proof of the “only if” part of
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Theorem 1 and the naturality of = yield that H is the stabilizer of 0. We can there-
fore apply the Centralizer Theorem with y=at. By an argument used in the proof
of Theorem 1, now (xt})n§=a, so S is the image of h—(h, hx). It is easy to see
that if (g, a)€Ngx4(S) then g must normalize both H and ker «, and then (using
Ha=A) that Ng, ,(S)=(C(H/ker #)x1)S with (C(H/ker a)Xx1)NS=(ker a)X1.
Consequently Ng, 4(S)/S=Cgs(H/ker o)/ker &, and so the Centralizer Theorem
yields Theorem 2’.
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