Directed, topological and transitive relators

By A. SZAZ (Debrecen)

Introduction

Relators are simply nonvoid families of reflexive relations on sets. They are
straightforward generalizations of the various uniformities [27], and are essentially
identical to the generalized uniformities of KonisHi [14] and KrisHNAN [16] and to
the connector systems of NAKANO—NAKANO [24].

Relators were proposed in our former paper [33] as the most suitable basic
terms which topology and analysis should be based on. In [33], we have mainly stud-
ied limits, closures and closed sets in relator spaces and uniform, proximal and
topological continuities of functions from a relator space into another.

In the present paper, we aim to provide a primary classification for relator
spaces which is necessary to formulate and prove generalized forms of many of the
important theorems of topology and analysis. To this end, the following fundamental
properties of a relator Z on a set X" will be introduced and investigated.

Uniform directedness: T RMNS for some T¢Z# whenever R, S€A.

Proximal directedness: T(A)cR(A)NS(A) for some TER whenever ACX
and R, SEZ.

Topological directedness: T(x)C R(x)(S(x) for some TEAR whenever x€X
and R, SEZ.

Strong topologicalness: R(x)°=R(x) for all x¢X and ReZR.

Topologicalness: x€R(x)°® for all x¢X and RcZ.

Weak topologicalness: {x}={x} for all xcJX.

Strong transitiveness: RoR=R for all RcZ.

Uniform transitiveness: ToScR for some S, T¢é# whenever R<Z.

Proximal transitiveness: T(S(4))cR(A) for some S, T¢# whenever ACX
and ReR.

Topological transitiveness: T(S(x))cR(x) for some §,T<¢Z2 whenever
xEX and ReZR.

Weak transitiveness: (N2Z)o(NA)=NA.

The results obtained mainly answer the following important questions: 1. How
can these properties be expressed in terms of the induced limits, closures or closed
sets? 2. To what extent are these properties preserved under uniform, proximal or
topological equivalence of relators? 3. When can a given relator with some of these
properties be replaced by a better equivalent one?

In particular, some of the results of CecH [2], Davis [5], EFrREMOvVIE—SvVARC [8],
Husek [11], KeLiey [13], Koxisat [14], LeviNg [17], MORDKOVIC [19], MURDESHWAR—
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NAIMPALLY [21], NAKANO—NAKANO [24], NIEMYTSKI [26], PERVIN [29] and WIL-
LIAMS [36] are generalized, improved or reformulated. For the details, see the ““Notes
and comments” section.

The only prerequisites for reading this paper are a basic knowledge of rela-
tions and nets [13] and a familiarity with a few things from our former paper [33]
which will be briefly laid out in the next preparatory section.

Notation and terminology

By a relator space we mean an ordered pair X (#)=(X, #) consisting of a set X
and a nonvoid family Z of reflexive relations on X which we call a relator on X.

Denoting by #/=A4(X) and Z=2(X) the classes of all nets and sets in X,
respectively, we introduce the next basic tools in X(Z):

Limg, Adhy ¢ /' XA, limg,adhy, c /XX,
Clg,Inty € PXP, clg,intgc PXX
and F,, FR,C? such that for any (x,), (y)EAN, A, BEP and x€X we have
() (7)ELimg((x,) ((7)EAdhR(x,) iff ((7sr )
is eventually (frequently) in each R¢Z;
(ii) x€limg((x) (v€adha((x,)) iff (VeLima((x) (()EAdhL((x)));
(iii) BEClg(4) (B€lIntg(A)) iff ANRB) #0 (R(B)C A)
for all (some) ReR;
(iv) x€clg(A) (x€intg(4)) iff {x}€Cla(4) ({x}€Inte(A));
(V) A€F, (AeTy) iff cla(A) = A (inte(4) = A).

Trusting the reader’s good sense to avoid confusion, we shall always use the
simplied notations y,€ Li‘m, s y,,éAglhg By XE li:na x, and xéat}h, x,. More-
over, when it is convenient, we shall simply write A and A4 instead of cl, (4) and
intg (A), respectively.

We define a function (or a relation) f from a relator space X(£) into another
Y(¥) to be (Z, &¥) — continuous if f~'oFofCR, ie., f~roSofeR, for all SC&.

To obtain the most important continuity properties of f as particular cases of
the above definition, we introduce the following basic refinements of a relator #

on A
R* = {Sc XXX: JRER: R c S},

R* = {Sc XXX: ¥4 cC X: JRER: R(A) c S(A)},
R = {Sc XXX: ¥x€X: 3RER: R(x) C S(x)}.

After this, f may be called uniforinly, proximally, resp. topologically continuous
if it is (R*, &)-, (R*, #)-, resp. (&, F)-continuous.
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The corresponding comparisons of relators # and % on the same set are to be
defined accordingly. For instance, # may be called proximally finer than (equivalent
to) 5; if A% (#%=2%). Similarly, we can also say that 2 is proximally fine
if A*=24A.

It is not hard to see that the above basic refinements are closely related to the
induced basic tools. For instance, a function f from X(2) into Y (%) is (9?5, F)-
continuous iff BeCly, (4) implies f(B)€Cl, (f(A)), or equivalently B¢ Int, (A)
implies f~1(B)€Intg (f~'(4)). Hence, by letting f be the identity function of X,
one can easily derive that #% is the largest relator on X such that CI o Clg
(Int g—lnt_,)

lf R, is a relator on X, for all z in a nonvoid set I" and =, is the projection of
X=X X, onto X, for all acI", then the relator

aEl .
R= |JnloR,om,
acl

on X is called the projectively generated product of the relators 2,.

Clearly, Z is the smallest relator on X such that each =, is (2, #,)-continuous.
However, the relator # is usually too small for several purposes. For instance, if
r={1,2} and AcX, then we only have

clg(d) = NR;o{Ao X oA} o R,

as a striking analogue of [21, Theorem 1.37].
Therefore, we have also to consider some larger relators on the product set X.
An immediate candidate for this is the relator

R ={No: 0= o R is finite}.

However, sometimes a direct product of the relators 2, is more appropriate than 2.

If for each (R,),.r€ x R,, @ R, is the relatlon on X such that
2€l

( @r RJ)(") = x,_ R:("‘:)
for all x=(x,),r€X, then the relator
® #: = {® Rt (R)er€ X &}

on X will be called the direct product of the relators #,.
It is clear that #Zc @ A, if X,xXX,e#, for all acl', and ® R,CR

a€l
if I' is finite. Moreover, one can also easily check that if I'={1, 2} and AcCX,
then we have

Cla,0a,(4) = N R0 Ao R,

as a certain improvement of [21, Theorem 1.37].
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1. Directed relators

Definition 1.1. A relator Z on X, or a relator space X(2), will be called

(1) uniformly directed if for each R, S€# there exists T<# such that
TCRNS:

(i1) proximally directed if for each ACX and R, S€Z there exists T¢Z such
that T(A)cR(A)NS(A):;

(i) topologically directed if for each x€X and R, S€Z there exists TR
such that T(x)c R(x)NS(x).

Remark 1.2. Clearly “uniformly directed” implies ‘“‘proximally directed”,
and “proximally directed” implies ‘‘topologically directed”.

On the other hand, the next useful example shows that the converse implications
do not, in general, hold.

Example 1.3. Let X be a set and </ be a nonvoid family of subsets of X. For
each A€/, define the relation R, on X such that R,(x)=4 if x€4 and R, (x)=X
if x€X\A. Then

Ry = {Ry: Ac A}
1s a relator on X such that

(i) Z,4 is uniformly diercted if and only if /{0, 4, X} for some ACX;

(ii) 2., is proximally directed if and only if ANBcsZ for all A, BEs/ with
0=ANB#=X;

(i) #, is topologically directed if and only if for each A, B€s/ and
xéAUB there exists C€.o/ such that xeCc ANB.

The proof is quite straightforward, but rather lengthy. For instance, we shall
only prove here the “only if part™ of (ii). For this, let Z be proximally directed, and
assume on the contrary that there exist A4, B€«/ with 0#AMNB#X such that
AN B4 of. Then, because of the proximal directedness of 2, there exists C€.«/ such
that

Rc(ANB) = R (ANB)N Ry(ANB).

Hence, since AN B=0, it follows that
Rc(ANB) c ANB.

From this latter inclusion, using AN B=X, we can infer that ANB\C=0, i.e.,
AMNBcC. Now, taking into account 0= AMNBcC, from the above inclusion we can
alsoinfer that C< AN B. Consequently, we have C= A4 B, which is a contradiction.

Remark 1.4. Note that the condition given in (iii) can be briefly expressed by
saying that o7 is a base for a topology on U ..

The importance of uniformly directed relators lies mainly in the fact that they
do not need nondirected nets.

This is well shown by the next three basic theorems which rest upon the same
arguments as [33, Theorems 1.11, 3.1 and 5.2].

Theorem 1.5. If (x,) and (y,) are directed nets in a uniformly directed relator
space X(R), then the following assertions are equivalent:

(i) _1',6A9h . X
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(i) wy€ L;m, zy for some directed subnet ((z4, wp)) of ((x,, 3,)-

Theorem 1.6. If A and B are sets in a uniformly directed relator space X(R),
then the following assertions are equivalent:

(i) BEClg(A);

(ii) y,€Limg x, for some directed net ((x;, »,) in AXB.

Theorem 1.7. If f is a function from a uniformly directed relator space X () into
an arbitrary one Y (%), then the following assertions are equivalent:

(i) fis (R*, %) — continuous;

(if) y,c Limg x, implies f(y,)c Limy f(x,) for any two directed nets (x,) and

(y2) in X.
Concerning uniform directedness, one can also easily prove the following useful

Theorem 1.8. If Z is a relator on X, then the following assertions are equivalent:
(i) # is uniformly directed;

(ii) R* is uniformly directed.

Hence, it is clear that we also have

Corollary 1.9. If # and & are uniformly equivalent relators on X, then & is uni-
Jormly directed if and only if & is uniformly directed.

The importance of proximally directed relators lies mainly in the next funda-
mental

Theorem 1.10. If 2 is a relator on X, then the following assertions are equivalent:
(i) # is proximally directed;

(ii) Intzy(ANB)=Intz(A)NIntg(B) for all A, BCX.

(iii) Clae(AUB)=Clg(A4)UClg(B) for all A, BCX.

ProOF. Suppose that (i) holds and C¢€Inty(A4)Intgz(B). Then, by the definition
of Inty, there exist R, SE# such that R(C)c A4 and S(C)cB. Moreover, by (i),
there exists T€Z such that T(C)cR(C)NS(C). Consequently, C¢lIntg(4MNB).
Hence, since the inclusion Intg(AMNB)CIntgz(A)Inty(B) is always true, it is
clear that (ii) also holds.

Conversely, suppose now that (ii) holds, and let AcX and R, S¢Z#. Then,
again by the definition of Intg, it is clear that A€Intz(R(4)) and A€Intg(S(4)).
Hence, by the essential part of (ii), it follows that A€ Int,(R(A)NS(4)). ie., T(4)C
< R(A)NS(A) for some TeZR. Consequently, (i) also holds.

The equivalence of (ii) and (iii) is immediate from the fact that Clgz(4)=
=2(XNIntgz(AN\4) for all ACX.

As an immediate consequence of this theorem, we have

Corollary 1.11. If Z and & are proximally equivalent relators on X, then R is
proximally directed if and only if & is proximally directed.

Concerning topological directedness, it seems convenient to start with the next
striking
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Theorem 1.12. If 2 is a relator on X, then the following assertions are equivalent:
(1) R is topologically directed;
(i) & is uniformly directed.

ProoF. Assume (i), and let R, S€¢Z. Then, by the definition of #, for each
x€X, there exist R,, S,€Z2 such that R.(x)CR(x) and S.(x)cS(x). Moreover,
by (i) for each x€X, there exists T,€# such that T,(x)CR,(x)NS.(x). Define
a relation T on X by T(x)=T,(x). Then, it is clear that T¢# and TCRNS.

Now, assume (ii), and let x€X and R, S¢2. Then, because of #C# and
(i1), there exists T €A such that T RNS. Moreover, again by the definition of 93,
there exists V€ such that V(x)< T(x). Hence, it is clear that V(x)< R(x)NS(x).

By immediate consequences of this theorem, we have

Corollary 1.13. If Z and & are topologically equivalent relators on X, then ®
is topologically directed if and only if & is topologically directed.

Corollary 1.14. If Z is a relator on X, then for its topological refinement R, the
three kinds of directedness coincide.

The next two important theorems can be easily derived from Theorems 1.5 and
1.6 by using Theorem 1.12.

Theorem 1.15. If x is a point and (x,) is a directed net in a topologically directed
relator space X(R), then the following assertions are equivalent:
(i) xcadhy x,;
x

(i) x€ liﬂma yg for some directed subnet (yz) of (x,).

Theorem 1.16. If x is a point and A is a set in a topologically directed relator
space X(R), then the following assertions are equivalent:

(i) xeclg (4);

(i) x€ li:nm x, for some directed net (x,) in A.

Remark 1.17. Note that Theorems 1.15 and 1.16 improve the particular cases
of Theorems 1.5 and 1.6 when (y,)=(x) and B={x} for some x€X.

In principle, the following fundamental theorem should also be derivable from
Theorem 1.7 by using Theorem 1.12, but for this we should know Limj.

Theorem 1.18. If f is a function from a topologically directed relator space X into
an arbitrary one Y (), then the following assertions are equivalent:

@) fis (R, &) — continuous;

(i) .\‘€liam3 X, implies f(x)éliply S(x,) for any point x and directed net (x,) in X.

PrOOF. Because of [33, Theorem 5.11], only the implication (ii)=(i) needs a
separate proof. For this, it seems convenient to note now that if (i) holds, then by
Theorem 1.16, x€cly(4) implies f(x)€cly (f(4)) which is equivalent to (i) by
[33, Theorem 5.135].

Remark 1.19. Note that the implications (ii)=(i) in Theorems 1.5,71.6, 1.15



Directed, topological and transitive relators 185

and 1.16, and the implications (i)=s(ii) in Theorems 1.7 and 1.18 do not need the
directedness conditions on .

As an analogue of Theorem 1.10, now we can also easily prove

Theorem 1.20. If Z is a relator on X, then the following assertions are equivalent:

(i) 2 is topologically directed;

(i) intgz(ANB)=intgz(A)Nint4(B) for all A, BC X;

(iii) cla(AUB)=clg(A)Ucly(B) for all A, BCX.

PrOOF. By [33, Theorem 6.7], we have

Int; (A4) = {B c X: Bcinty (A)}
for all AcX. Hence, it is clear that (ii) holds if and only if
Int; (AN B) = Int; (4) M Intg (B)

for all 4, BCX. Thus, by Theorem 1.10, (ii) is equivalent to the proximal directed-
ness of 2. Hence, by Corollary 1.14 and Theorem 1.12, the equivalence of (ii) and (i)

is immediate.
The equivalence of (ii) and (iii) is apparent from the fact that clgz(4) =

= X\lintzg(A\4) for all AcX.
Remark 1.21. Note that Theorems 1.15, 1.16, 1.18 and 1.20 can also be proved

directly without using Theorem 1.12 and other former results.

2. Topological relators

Definition 2.1. A relator # on X, or a relator space X(#), will be called

(i) strongly topological if R(x)¢Z5 for all xéX and REZ;

(i1) topological if x€R(x)*° for all x¢X and REZ;

(iii) weakly todological if {x}e%, for all x€X.

Remark 2.2. 1t is clear that “strongly topological” implies “topological”.

The fact that “topological™ also implies “weakly topological™ is immediate from
the next

Theorem 2.3. If Z is a relator on X, then the following assertions are equivalent:
(1) 2 is topological;

(i) Ae T, for all ACX;

(i) A€ F, for all ACX.

PrOOF. Since we have x€R(x)° for any x€X and RE®, it is clear that (ii)
implies (i).

To prove the converse implication, note that if x£A4, then R(x)c A for some
ReR. Thus, if (i) holds, then x€R(x)*°c 4.

The equivalence of (ii) and (iii) is immediate from the fact that A= X\ (X\ A)°

for all AcX.
As an immediate consequence of this theorem, we can at once state



186 A. Szaz

Corollary 2.4. If Z and & are topologically equivalent relators on X, then R
is topological if and only if & is topological.

Moreover, from Theorem 2.3, we can also at once derive

Theorem 2.5. If Z is a relator on X, then the following assertions are equivalent :
(1) # is topological;

(i) A=U{GeT,: Gc A4} for all AcCX;

(iii) A=N{FeF: ACF)} for all ACX.

Remark 2.6. Hence, it is clear that in a topological relator space X'(#), int(cl)
and 7, (#,) are also equivalent tools.

On the other hand, by using Theorem 2.3, we can also complement Theorem 1.20
with the next

Theorem 2.7. If R is a topological relator on X, then the following assertions are
equivalent:
(i) 2 is topologically directed:;
(ii) A, BET, implies A\ BETy;
(iii) A, BEF, implies A\UBEF,.

ProoOFr. The implication (i)=(i1) is immediate from Theorem 1.20.
To prove the converse implication, note that if 4, BC X, then by Theorem 2.3,

A, ﬁEﬁ;. Thus, if (i1) holds, we also have AN Be T,. Hence, it follows that
ANB c (ANBY c (4 N A)°.

Now, since the converse inclusion is automatic, by Theorem 1.20, it is clear that (i)
also holds.

The equivalence of (ii) and (iii) is apparent from the fact that F,={X\ 4:
AETy).

Remark 2.8. Note that the implications (i)=(ii)<(iii) do not require # to be
topological.

The next simple example shows that the implication (1) =(i) need not be true if
2 is not topological.

Example 2.9. Let X={0, 1,2}, and for each i=1,2, define the relation Ry
on X such that R;(0)={0,i} and R,(1)=R;(2)={1,2}. Then Z={R,, R,} is a
topologically nondirected relator on X such that the family 7,={0, {1,2}, X}
is still closed under intersections.

The relationship between topological and strongly topological relators will be
cleared up by the following

Theorem 2.10. Let 2 be a relator on X. For each ReR, define the relation R°
on X by R (x)=R(x)°. Moreover, let #°={R°: RER}. Then #° is a strongly top-
ological relator on X such that #° and R are topologically equivalent if and only if #
is topological.

ProoF. Since x€R(x)° for all x€X and RE#, itis clear that 22° is a relator
on X. Moreover, since R°CR for all REZ. we obviously have Zc(2°)*c(#°)".
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On the other hand, straightforward applications of the corresponding definitions
show that Z is topological if and only if Z°CZ.

Finally, if y€R(x) for some x€X and R<Z, then there exists S€Z such
that S(¥)CR(x). Hence, S°(y)cR°(x). Consequently, y€intg.(R°(x)).

As a useful consequence of this theorem and Corollary 2.4, we have

Corollary 2.11. A relator Z on X is topological if and only if Z is topologically
equivalent to a strongly topological relator & on X.

The next theorem offers a somewhat deeper characterization of topologicalness
in temrs of nets.

Theorem 2.12. If 2 is a relator on X, then the following assertions are equivalent:
(i) Z is topological;
(it) limy has the iterated limit property.

PROOF. Suppose that (i) holds. Then, because of Corollary 2.11, we may assume
without loss of generality that # is strongly topological. To prove (ii), let (x,)s:r,
be a net in X for each « in a nonvoid preordered set I', and suppose that yaEliﬁm., Xap

for each a¢rI', and z€lim,y,. Then, given R<Z, there exists a«,¢I" such that
" §

y.£R(z) for all a=«,. Moreover, since R(z)€7,, for each x=z, there exists
B,cT, such that x,€R(z) for all f=p,. Choose @y€ XF such that ¢,(2) =4,

for all a=x,. Then, it is clear that x,,,€R(z) for all :x—~ % and ¢=¢,. Conse-
quently, we have
z€limg X,p(x), Where (a, @)elx X I,,
(2, 0) el

and thus (ii) is proved.

To prove the converse implication, suppose now that (i) does not hold. Then,
there exist x€X and REZR such that x4 R(x)°°. This means that for each S¢2
there exists ys€S(x) such that for each TEZ there exists zgr€T()s) such that
zsr§ R(x). Hence, by preordering # with the reverse set inclusion, it is not hard
to check that (zsy)r.» 18 a net in X for each S€# such that ys€ lilmx zst for each

SER, and xélism,ys, but

x4 iim,-, Zsos)s Where @: % —~ R.
S, @)

And thus (ii) cannot hold too.

Remark 2.13. By using Theorem 2.3 and [33, Theorem 3.8], this latter implica-
tion can also be given a direct proof.

However, note that the above indirect proof gives a little more, namely that (i)
is already implied by a particular case of (ii).

In this respect, it is also worth mentioning that using Theorem 1.12 and the same
argument as above, we can also easily prove

Theorem 2.14. If R is a topologically directed relator on X, then the following
assertions are equivalent:
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(i) # is topological;
(ii) limy has the iterated limit property for directed nets.

It is a striking fact that to some extent nets can also be used to describe strong
topologicalness of relators. Namely, we have

Theorem 2.15. If Z is a relator on X, then the following assertions are equivalent:
(i) Z is strongly topological:

(i) R~'olimg C limgg, for all REZR.

Proor. Suppose that (1) holds, and let R€Z. Moreover, let (x,) be a net in X

and assume that y¢ R"l(ligng x,). Then, there exists x€limg x, such that y¢ R~(x),

i.e., x€R(y). Hence, since R(y)€T4, it is clear that (x,) is eventually in R(),
ie, y€limg,x,. Consequently, R™'(limgx,)Climp, x,, whence (i) follows.

To prove the converse implication, suppose now that (i) does not hold. Then,
there exist x€X and RE#Z suchthat R(x)¢ Z,. This means that there exists y¢ R(x)
such that for each S€Z there exists ys€S(y) such that ygé R(x). Hence, by preor-
dering # with the reverse set inclusion, it is easy to check that (ys)sc 4 is a net in X
such that y¢€ Iism.aP »s, but x4 ]ign{k} »s, and thus (i) cannot hold.

Remark 2.16. Note that, because of [33, Theorems 3.10, 2.16 and 2.10], we
always have

n R—lolimg o ]ims — ﬂ lim{R}.
Rc & Re®

From Theorem 2.15 and the second part of its proof, it is clear that we can also
state

Theorem 2.17. If R is a uniformly directed relator on X, then the following asser-
tions are equivalent:
(i) R is strongly topological;

(i) R~'(limg x,) < limgy x, for any REZR

and any directed net (x,) in X.

Remark 2.18. Note that by using [33, Theorem 1.17 and Remark 1.18], the above
mixed condition can be written in a more uniform form.

Concerning weak topologicalness, we can at once state

Theorem 2.19. If # and & are topologically equivalent relators on X, then # is
weakly topological if and only if & is weakly topological.

Moreover, using [33, Theorem 2.10], we can also easily prove

Theorem 2.20. If 2 is a relator on X, then the following assertions are equivalent:
(i) # is weakly topological;

@@ N(NR)oR =N2R.
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Proor. We clearly have

= N R(x) =(NA)(x)
RER

and

{x}= N RH((NBDx) = (N (NR)R)(x)
RER RE®

for all x€X, whence the theorem is immediate.

Remark 2.21. By a simple application of this theorem, one can easily check that
the relator Z given in Example 2.9 is not even weakly topological.

3. Transitive relators

Definition 3.1. A relator # on X, or a relator space X(#), will be called

(1) strongly transitive if each REZ is transitive;

(ii) uniformly transitive if for each ReZ# there exist S, T¢Z2 such that
ToSCR;

(ii1) proximally transitive if for each AcX and REZ there exist S, TR
such that T(S(4))SR(A);

(iv) topologically transitive if for each x€X and REZ2 there exist S, Te#
such that T(S(x))cR(x);

(v) weakly transitive if (2 is transitive.

Remark 3.2. 1t is clear that any of the properties (i), (ii) and (iii) implies the
subsequent one.

The fact that “topologically transitive” also implies “weakly transitive” is
immediate from the next

Theorem 3.3. Let & be a relator on X. Then the following assertions hold:

(i) If R is weakly topological, then Z is weakly transitive.

(it) If R is topologically transitive, then R is topological.

(iii) If & is strongly transitive, then R is strongly topological.

Proof. If 2 is weakly topological and R= 2, then, by Theorem 2.20, RoR=
=RoNAc NRoZ=R.

The assertions (i) and (iii) are even more obvious consequences of the corre-
sponding definitions.

By using a particular case of the relator %, given in Example 1.3, we can com-
plement Theorem 2.10 with the next important

Theorem 3.4. If Z is a relator on X, then R 5 o 18 a strongly transitive relator on X
such that Ry, and # are topologically equivalent if and only if R is topological

Proor. From the definition of #5, it is clear that Z5_ is strongly transitive.
Thus, if # 5, and # are topologicaliv equivalent, then, by (iii) in Theorem 3.3 and
Corollary 2.11, # is necessarily topological.
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On the other hand, it is also clear that 2 Qc.é is always true. Finally, if 2
is topological, then by Theorem 2.3, we have R(x)°¢ 7, for all xéX and REZR,
and thus in this case QC(Q,Q)A is also true.

Using this theorem, we can improve one half of Corollary 2.11 by stating

Corollary 3.5. A relator # on X is topological if and only if R is topologically
equivalent to a strongly transitive relator & on X.

Hence, by noticing that & is still topologically transitive, we can also state

Corollary 3.6. If Z is a relator on X, then the following assertions are equivalent:
(i) R is topological;
(ii) R is topologically transitive.

Remark 3.7. Note that actually Corollary 3.5 yields a little more: if (i) holds,

then for each x¢X and ReZ there exists S€Z# such that S(S(x))c R(x).
The importance of uniformly transitive relators lies mainly in the next

Theorem 3.8. If' Z is a uniformly directed relator on X, then the following asser-
tions are equivalent:

(i) Z is uniformly transitive,

(ii) the restriction of Limy to directed nets is transitive.

ProoF. The proof of the implication (i)=(ii) is quite straightforward.

To prove the converse implication, note that if (i) does not hold, then there
exists REZA such that for each S€Z# there exist Xxg, ¥s. zs€ X" such that (xs, y5)£S
and (ys, z5)€S, but (xs5.z5)¢ R. Hence, by noticing that # is now a directed set
with respect to the reverse set inclusion, it is easy to see that (xg)s:#, (Vs)sc2 and
(z5)sc 2 are directed nets in X such that

Xg€ Lign3 ¥s and yg€ Lir;n, zg, but xg¢ Li;n, Zs,

and thus (i1) cannot hold.

Remark 3.9. Note that the implication (i)=(ii) does not require # to be uni-
formly directed.

Moreover, note also that if 2 is a relator such that Lim is transitive, then %
is necessarily uniformly transitive.

Concerning uniformly transitive relators, one can also easily prove the next
useful

Theorem 3.10. If Z is a relator on X, then the following assertions are equivalent:
(i) R is uniformly transitive;

(i) R* is uniformly transitive.

Hence, it is clear that we also have

Corollary 3.11. If # and & are uniformly equivalent relators on X, then # is
uniformly transitive if and only if & is uniformly transitive.
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To demonstrate the usefulness of proximally transitive relators, we shall now
prove

Theorem 3.12. If # is a relator on X, then the following assertions are equivalent:
(i) R is proximally transitive;
(if) Intyolnt, = Inty

Proor. Since the relation Inty is always transitive, we need actually show that
(1) is equivalent to the inclusion Int,ClIntgzolnty.

Suppose that (i) holds and B¢Inty(A4). Then R(B)cA for some R-Z.
Moreover, there exists S, T€¢2 such that T(S(B))cR(B). Consequently, S(B)c
€Intgy(4). Hence, since B<lntg(S(B)), it is clear that Be&lInty(Intg(A)).

Suppose now that Int,cIntgolnt,, and let AcX and REZ. Then
A€ Int,,(R(A)). Thus, by the assumption, there exists BC X such that AcInt,(B)
and B¢lIntgy(R(A)). Consequently, S(4A)cB and T(B)cR(A) for some S, T<R
And this implies that T(S(A))<R(A).

Remark 3.13. In contrast to Theorem 1.10, an equivalent reformulation of (ii)
yields only that B{Cl,(4) with 4, BC X implies the existence of C<— X such that
CéCly(A) and BéCly(XN\C).

As an immediate consequence of Theorem 3.12, we can at once state

Corollary 3.14. If # and & are proximally equivalent relators on X, then & is
proximally transitive if and only if & is proximally transitive.

Analogously to Theorem 3.8, now we can also easily prove

Theorem 3.15. If 2 is a uniformly directed relator on X, then the following asser-
tions are equivalent:
(i) # is topologically transitive;
(ii) y,€Limy, x, implies limy y,Climg x, for any two directed nets (x,) and
x x [ 1
(yo) in X.

Proor. Suppose that (i) holds, and let (x,) and (y,) be directed nets in X such
that y,€Lim, x,. Moreover, assume that x€limgzy, and R<Z. Then, there exist
S, T¢ # such that T(S(x))< R(x). Morcover, there exist o; and o, such that y,£S(x)
for all 2=, and x,£T(y,) forall a=a,. Hence, by choosing «, such that ay=a,
and o=, we can state that x,€R(x) for all a=q,. Consequently, x¢limg x,.

x
And thus (ii) also holds.

To prove the converse implication, note that if (i) does not hold, then there
exists x€X and RE€Z such that for each S¢Z# there exist xg, ys€X such that
xs€S(ys) and ys€S(x), but xg¢ R(x). Hence, by noticing that 2 is now a directed
set with respect to the reverse set inclusion, it is easy to see that (xg)s. » and (¥s)s: 2
are directed nets in X" such that

,1-'36Lilsnu,r xs and xélilsn_.;, Vs, but x&lirsnjxs.

and thus (ii) cannot hold. Consequently, the implication (ii)= (i) is also true.
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Remark 3.16. Note that the implication (i)=(ii) does not require # to be uni-
formly directed.
Moreover, note also that if 2 is a relator on X such that y,£Limgx, implies
a

li:n, y,c:li:n, x, for any two nets (x,) and (p,) in X, then 2 is necessarily topolo-

gically transitive.
From the above theorem, using Theorem 1.12 and Corollary 3.6, we can at once
derive

Corollary 3.17. If # is a topologically directed relator on X, then the following
assertions are equivalent:
(i) 2 is topological;

(i) y,€Limg x, implies limgy, C limgx,
@ a =

for any two directed nets (x,) and (p,) in X.

Remark 3.18. Note that because of Theorem 2.14, (ii) is equivalent to a restricted
iterated limit property for limg.

In connection with topologically transitive relators, also worth noticing is the
following

Theorem 3.19. If Z and & are relators on X such that PR and RCS §
then the topological transitiveness of R implies the topological transitiveness of .

Proor. If x€X and S€%, then because of ¥ #, there exists RER such
that R(x)c S(x). Moreover, if # is topologically transitive, then there exist
Ry, R,¢# such that R,(Ry(x))=R(x). On the other hand, since 2<%, there
exist Sy, 5,6 such that S;(Ry(x))=R;(Ry(x)) and S,(x)<Ry(x). And hence,
it is clear that S,(S,(x))=S(x).

From the above theorem, it is clear that we also have

Corollary 3.20. If Z and & are proximally equivalent relators on X, then R
is topologically transitive if and only if & is topologically transitive.

Concerning weak transitiveness, as an immediate consequence of [33, Theorem
2.22], we can at once state

Theorem 3.21. If Z is a relator on X, then the following assertions are equivalent:
(1) & is weakly transitive;
(i1) ¢4 is transitive.

Remark 3.22. To feel the difference between weak transitiveness and weak
topologicalness note that the relator 2 given in Example 2.9 is still weakly transitive.
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4. Equivalences of transitive relators

Theorem 4.1. Let # be a relator on X, and define

—r

1 2
A" = RoRo...oR

for some integer n=2. Then R" is a relator on X such that " and R are uniformly,
proximally, resp. topologically equivalent if and only if R is uniformly, proximally,
resp. topologically transitive.

Proor. To prove the stated equivalences of 2" and #, note that because of the
reflexivity of the members of %, we always have #"c #*. Moreover, apply the prop-
erties (i1), (ii1), resp. (iv) given in Definition 3.1 repeatedly sufficiently many times
and use again the reflexivity of the members of Z.

Remark 4.2. 1f Z is uniformly, proximally, resp. topologically transitive, then
A" is also uniformly, proximally, resp. topologically transitive.

The uniform, resp. proximal transitiveness of #" is immediate from the above
theorem by Corollary 3.11, resp. 3.14. Unfortunately, to prove the topological tran-
sitiveness of 2", Theorems 4.1 and 3.19 cannot be applied. Therefore, for this latter
purpose again the topological transitiveness of # and the reflexivity of the members of
2 have to be used.

Using Theorem 4.1, we can complement our former Theorem 2.10 with the
following important

Theorem 4.3. Let # be a topologically (proximally, resp. uniformly) transitive

relator on X and let & be another relator on X such that R'c¥. For each RER
define the relation R~ on X by R™(x)=cly(R(x)). Moreover, let #~ ={R™: RER}.
Then R~ is a topologically (proximally, resp. uniformly) transitive relator on X such
that #~ and R are topologically (proximally, resp. uniformly) equivalent.

Proor. Since RC R~ for any REZ, it is clear that 2~ cZ*cZ#. On the
other hand, since Z is topologically transitive, for each x€X and R€Z, there exist
S, TER such that T(S(x))cR(x). Hence, by [33, Corollary 5.16 and Theorem
2.10), it is clear that

§7(x) = ey (S() © el (S() = ) V(SE) © T(SE) © R().

Consequently, now we also have #Zc(27)".

Next, we show that #~ is also topologically transitive. For this, suppose that
x€X and ReZA. Then, by Theorem 4.1, there exist S,7,VeZ# such that
V(T(S)x)))c R(x). Hence, since S~ (x)cT(S(x)), itis clear that V(S (x))< R(x),
1e., V(y)cR(x) for all y¢S—(x). And this implies that ¥V~ (y)c R (x) for all
yeS-(x), ie., V-(S-(x))cR (x).

Finally, to prove the remaining assertions, one has to make the necessary modi-
fications in the first part of the above proof. Note that by Corollary 4.14, resp. 3.11
the proximal, resp. uniform equivalence of #~ and # implies the proximal, resp.
uniform transitiveness of 2.
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Remark 4.4. Note that if 2 is topologically semisymmetric in the sense that

ZA-'C A, then in particular we may take ¥ =2 in the above theorem.
Using Theorem 4.1, we can also easily prove some useful analogues of Theorems
2.10 and 4.3 which use the notion of the direct product of relators.

Theorem 4.5. Let 2 be a uniformly transitive relator on X and & be a relator on
XXX such that '@ RCY. For each RER, define R=int,(R). Moreover, let

@:{}i : RER). Then # is a uniformly transitive relator on X such that # and R
are uniformly equivalent.

PROOF. Since R R forany ReZ, itisclear that Qc(ﬁ)“. On the other hand,
if RER, then by Theorem 4.1, there exist S, T, VcZR such that VoToScR.
Hence, since

VoToS= U S-1(IXV()= U (S'@¥V)(x, ),
A 2 (x,)ET (x,ET
it 1s clear that

Tc intg-192(R) C int,(R) = R.

Consequently, now we also have R R, Finally, from the uniform equivalence of
2 and Z, by Corollary 3.11, it is clear that Z is also uniformly transitive.

Theorem 4.6. Let % be a uniformly transitive relator on X and let & be a relator
on XXX such that QR ' Y. For each RcAR, define R=cl,(R). Moreover, let

A={R: RER). Then R is a uniforml ly transitive relator on X such that R and R
are uniformly equivalent.

Proor. Since RCR forany REZ, itis clear that A R*. On the other hand,
if RE€Z, then again by Theorem 4.1, there exist S, T, V¢ % such that VoToSCR.
Hence, since

Cl‘;g._g-l (T) = n {WCTOQ: Q, "VEQ},
it 1s clear that
T= dg(T)c claga-1(T) c R.

Consequently, now we also have Zc ()" Finally, the uniform transitiveness of #
is immediate from the uniform equivalence of # and # by Corollary 3.11.
Remark 4.7. Note that in particular we may take
F=(R'XRY and L= (RXR-YY
in Theorems 4.5 and 4.6, respectively.

Notes and comments

The most complete classification scheme for generalized uniform spaces has for-
merly been given by NAKANO—NAKANO [24]. Unfortunately, they did not consider
proximal directedness and transitiveness which were first investigated by MoRD-
KoVIC [19] under the name correctness. A curious directedness property lying strictly
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between uniform and proximal directedness was earlier utilized by ALFSEN—NIJAs-
TAD [1]. Accounts on proximity motivated generalized uniform spaces can be found
in [23] and [20].

The relator 2, given in Example 1.3 will be called the DAvis—PERVIN relator
on X generated by &/ since its important particular case when &/ is an ordinary
topology on X seems to have been first introduced independently by Davis [5] and
PERVIN [29] in the proofs of their striking generalized uniformization theorems. The
relationship between & and 2, was later more fully explored by LEVINE [17]. Note
that the assertion (i) in Example 1.3 is an extension of [17, Theorem 2.9].

Theorems 1.5 and 1.15 are analogues of Theorem 2.6 of KELLEY [13]. Theorems
1.6 and 1.7 were first established for WEIL’s uniform spaces by EFREMOVIE—SVARC
[8]. (See also Mamuzi¢ [18, p. 120].) Extensions to more general spaces were later given
by HUSEK [11]. The origin of Theorems 1.10 and 3.12 goes back to MoORDKOVIC
[19]. Theorem 1.12 is essentially equivalent to the statement (1.23) of NAKANO—
NAKANO [24]. Theorem 1.20 is closely related to the first assertion in Proposition 1
of KonisHI [14].

Topologicalness of relators is an equivalent of the fourth axiom of neighbour-
hoods [30, p. 45]. Theorems 2.3, 2.5 and 2.10 correspond to Theorem 15 A.2 and
Corollary 15 A. 3 of CecH [2]. In connection with Theorem 2.7, see also the second
assertion in Proposition 1 of KonisHi [14] and the statements (2.2.1) and (2.2.23) of
CsAszAR [4). Theorems 2.12 and 2.14 are closely related to Theorem 15 B.13 of
CecH [2] and Theorems 2.4 and 2.9 of KeLLEY [13]. Theorems 2.15 and 2.20 seem to
have no analogues in the existing literature.

Analogously to strong topologicalness, topological, uniform and strong transi-
veness are also natural specializations of topologicalness. Particular cases of the
assertions (i) and (ii) in Theorem 3.3 were already proved by NACHBIN [22, p. 58],
MozzoCHI—GAGRAT—NAIMPALLY [20 (2.32)] and WiLLiams [36, Lemma 1.3].
Theorem 3.4 is patterned upon the generalized uniformization theorems of DAvis
[5] and PervIN [29]. Corollary 3.6 partly explains the apparently very strange termi-
nology of NAKANO—NAKANO [24] concerning topologicalness.

Theorem 3.8 has again been suggested by Errémovic—Svarc [8] and HUSEK
[11, p. 261]. The origin of Theorem 3.15 goes back to NiemyTzKI [26, p. 512]. This
latter theorem may also be compared to Theorem 7.18 of FLETCHER—LINDGREN [9].
Theorem 4.3 greatly improves the first assertions of Theorem 4 of Davis [5] and
Theorem 1.4 of WiLLIAMS [36]. Theorem 4.5 and 4.6 are essential generalizations of
Theorems 1.43 and 1.45 of MURDESHWAR—NAIMPALLY [21].

Finally, we remark that our subsequent paper “Inverse, symmetric and neigh-
bourhood relators™ will also contain several theorems about topological and transitive
relators.
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