Contravariant integration, line integrals

By KOSTADIN TRENCEVSKI (Skopje)

Abstract

In this paper an integral operator for tensor fields is introduced over the curves such that:
1° The result of integration is also a tensor field having one upper index more, 2° It is a generalization
of the usual integral, and 3° The new operator acts over the differential 1-forms as a usual integration.
The problem reduces to a system of Volterra’s integral equations. Also some other properties of this
integration are proved, and its geometrial interpretation is obtained.

1. Introduction

In this paper we shall solve the following problem. Let : [0, 1]-M, be an
arbitrary smooth curve on a differentiable manifold endowed with an affine connec-
tion, and let a differentiable tensor field A4 of type (r, 5) be given along the curve 7.

The problem is to find an integral operator f such that in local coordinate systems

along the curve 1
t)

(i) f At dx* should be components of a tensor field of type (r+1, s).

«(0)
(i1) In the special case when all components of the connection are identically

zero, the problem should reduce to the usual integration, i.e.

-'(l) ) (t)
(1.1) Th=0= [ Aijdt= [ A7) ax*
©(0) (0)

(iii) In the case of integration of an 1-form A;dx' it should be
_ () or)
(1.2) [ Aidx'= [ A;dx
©(0) (0)

In this paper a solution of this problem is found. The components

) .

reelp k

[ A%Gdy

(0)

are solutions of a system of integral equations, and they are unique. Apart from the
above three properties we give some other properties and a geometric interpretation
of this integral also is given. This integration is called contravariant, because the

result of its action yields one upper index more.

For the sake of simplicity we do not write the boundaries of integration.
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2. Solution in E", and its generalization

Let M, be an n-dimensional euclidean space. Suppose that (yl, ..., y")=(y)
is a rectangular Cartesian coordinate system and (x%, ..., x")=(x) is a curvilinear
coordinate system. According to the system () we shall write components as 4;, B/
and for (x): 4;, B/, and so on.

From the transformation formula of the connection coefficients we obtain

ox' 9%y
Ph() =
) w(x) oyt ox/ox*’

for I'i(»)=0. If we differentiate the identity

dy* ox*
ax* dy'

5 =

by x/, and use (2.1), we obtain the relation

L A
ox* ax/ oy'oy

(2.2) -

We shall restrict ourselves to the case when A is a tensor field of type (1, 1),
in order to avoid long expressions. Partial integration of the equation

J
yields
o O ox! 9yt . Ix*
(2.3) Al dv* = A gy
'(;!)l r(;!; oyt oxt " dy
Btj A axt
i oy axx T, . '(') F}Y s - Lo
S oy ) A ([ 4ar)dy.

() :(o) ©(0)

From conditions (i) and (ii) follows that

) c}\ Nt 9y ~
A'* dy e Y AT dy
,(i i £ ’
and
oxJ y* ax* " <

| dr="] Ha*

oyt ax " G «©®
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Putting this in (2.3), we obtain
(1) 1)

[ Alaxt= [ Afax*+

(0) ©(0)

3[ ox’ 3y" ox* ]
1 TU9yF ax 9y*) oxr ay* D
y ) b L A
+ [ oy 2y 3xi 9w f A3 &Y ) g i =
(1) . (1) D2 Xk ay ayl ()
= [ Ajdx*+ ——0J = 0f Asdx") dx® +
di m‘[ dyoy' "t ax ((bf x )
O e L W
+m!)' oy % o ( (£ ALdx’) dx*+
+ j’w 33,5’ slovsk 9% o ) f A"dx’]
©(0) %" y” =(0)
From (2.1) and (2.2) we obtain finally
(1) (1) (1) o ()
(2.4) [ Alaxt= [ Ajdx*— [ r%("[ Afdx)dx—
(0) 7(0) (0) (D)

=) 16) (1) )
— [ ([ Mat)axe+ [ rp(7[ Ajdxt)ax.
(0) (0) =(0) (0)

In the general case by the same way we obtain the following system of equations

() O € o) )
(2.5) [ Aihdd= [ Aphat— [ py("[ Afhde)dxt—

*(0) *(0) *(0) (0)
1) _t(0) #(r A,(

— [ m ([ Afyrat)det—. f ((Cf Al at)dxt+
(0) 7(0) «(0)
(1) ..‘“" . “,(

+ [ 0u(Cf Al d)dd+ ..+ j N f At ) di
(0) t(0) (0) (0)

Where: &, i B i viodas BELL, Ay sunp ik
So the problem reduces to solve the system of integral equations (2.5) with

unknown functions
(1)

[ AR axt
0)
It has a unique solution, because it is a Volterra system of integral equations and it

can be solved by successive approximation ([1], [2], [3]). In fact (2.5) is a special case
of Volterra system where the scores are functions only from the variable 6. So we see
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that if in the euclidean space the problem raised in § 1 has solution, then itis a solution
of the system (2.5), and this solution is unique.

Let us consider an M,. Let U be a coordinate neighbourhood of it with local
coordinates x’. Consider (2.5) in U, where the tensor 4 and the curve t are given,

and the integral
(1)

[ A axt
(D)
is unknown. (2.5) has a unique solution for this integral.

Proposition. This integral is a solution of our problem in U.

Proor. Condition (i) will be considered in § 3. Condition (ii) is obviously satis-
fied. From (2.5) we obtain

[ayaxt = [ Ayt~ [ 15 ([ Ayd) ai+ [ 14 (C [ 4,dxt) ax.
If we put here j=k and sum up over k, we receive
[ Adxt = [ Adxt,

and the condition (iii) is satisfied. J
We see that if V is a scalar, then

§ f Vdx* = f Vdx* - f I} [ ) f thx’] dx*,

We see that in this case we do not integrate a scalar but a contravariant vector Vdx*.
Integration of a scalar appears when we integrate the contraction 4;dx’ and so in
this case the contravariant integral is equal to the usual integral.

3. Tensor character of the contravariant integral

We prove that the solutions of the system (2.5) are tensor components, i.e.
condition (i) holds. We shall restrict ourselves to the case when A is a covariant vec-
tor in order to avoid large expressions. In the general case when A is a tensor field
of type (r, 5), the same result can be obtained in a similar way.

Let x!,..,x" and X',...,X" be two coordinate systems. The components
f A;dx* and f A;dx* are obtained as solutions of the following two systems

(3.1) [ Adt = [ Aat— [T5(7 [ Adv)ax'+ [T ([ 4, dxt)dx!
and
(G2  [Adw = [Adx— [I4("[Aaw)de+ [ Fy( [4,d%) a7

Our aim is to prove that

5 2/ 9xk 4
(3.3) [Aidx* = 0%! 0x*

W'a?‘ ijdf’
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for i, ke{l, ...,n}. It is sufficient to assume that (3.2) and (3.3) hold and to prove
that the system (3.1) is satisfied, because the system (3.1) has a unique solution.
Putting
o R or _x

(.4 Yu= o7 o7 o5 =t ox 50w
in (3.2) we get
TR = A [ 55 e T ([ At e~

oz P*xF - A% dx* .
_f-c;’% 3)?';.?‘ [ f‘z‘df’]df’_p 0{‘ F 3: I',f;.[ fA df*] dx' +

o Pt o Ty
[ o ([ a2 a
Expressing the integrals in the coordinate system (x)

v vk . .5 =k
ox o%t andx”sz'\—.A 92

ox' ox’ o T ox
OF* Ox* Ox* |, Ox® OF (~p, . . OR .
L IF af" o7 o | [A4d®) gz d—

a“ 32' A
"fa; IR Br 3r‘°[ A ]_‘dx 3

+fr3‘x ox* ox* ox*

o 97 o7 o T ([ Asdx®) dv'+

f IX #x* Ox® Ox*
ox* OxXI0% OX" Ox®

» f ax* Ix* ox* Ox°*

“[4, dt“"]——dx =

W&‘—“A,dx‘ Ox rx— PEL I',ﬁ,.[ fA dt'u']dl —

Ot Ox* OF 9xF - I3
“f 9 97 9w v o (| [ Asdx) e dx+

O+ dx» % 9x
+ f g I ([ A dv+ | 25 2= afja_,[ [ Agdx?) .

Putting here

#xt ox ox' _  oxt PR
X' 0X' 9x° Ox*  OX* Ox“°0x*
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we get

0x* Ox* - ox* ox* 0
W% fA,d,\"‘ =./‘3%i—~g—£1—/{sdl fgxl a{:rg‘,( fA dx]dx+

Ix* 0% ox* Ox*
77 oo | [ Asax') ax’ +fa xoer I ([ Audxt) axr+
ozt 0 3x’
ox* Ix* [ f A dxj] dx’.
Using partial integrauon at several terms we obtain
dx* Ox* Ox® ’*x* ox*

(3.5) o [d,ax = Tt MfAd* axiaxvaf*[f‘”x]“"

0 0
_f[ ();c'] [fA d-l]dv Bx‘t d_‘ ff;}v[ fA dx“’]dx"
* %
f@x‘lar =7 ([ T ([ Acaxe)dx?) ax*+
d 0
() o5 ()
+fg; af‘jar [ fA dx‘]dr +3x1 3-:-{’”‘[ j‘A d).)d\ h
P ) )
fax"()’c‘ F g [_’.rn fA dx )LIX](L\
0 0x* ox*

~ | 37 37 37 (J Fa ([ Aud*) dxr) dx*+

+ (o o) i ([t
Let us denote

Mt ="[ didx*— [ A;dx*+ [ T4(" [ A;dx)dx'— [ 15(7 [ A, dx*) dx'.
Then (3.5) can be brought to the form

2 oy P o, ( 0 6‘7] A
B_J'E‘WM fd\“‘dr dx‘M et fa Ix’ O {),‘;.M dx"

ox* 3:?" i Bx" 3\
Wﬂx fM d 32‘
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Differentiating this equality by the parameter 1 we obtain
ox* Ix* dM}
ox* 9% dr
So all the components M} must be constants along the curve t(¢). Since M?=0

at the point 7(0), it follows that M/}=0 along the whole curve. So we have proved
that the system (3.1) is satisfied.

= 0.

4. Some properties of the contravariant integration

Since the system (2.5) has a unique solution, it follows that the following two
properties are satisfied

4.1) o " [(Ayh + B dxk =" [ Ay dxk+ " [BYh axt
and
4.2) > “fcApydt=C [ A dxt
where C=const.
o S | P dxk
4.3) ¥ Vio ([ Ajdxt) = Ajf—-

Proor. We shall prove it for r=1 and s=2. The general case can then be
proved in the same way. (4.3) means

L Apd) ([ e %ﬂr;‘,. . fA;,dxa] axr_

(I S Abdet) 2 (rp [ g ant) S = gy, 2
In order to prove this we consider the equation
0 L0 o
[ Ajax* = f Apd* =" [ k([ Ajdx)dx—
©(0) t(0) (0) (0)
(1) (o) (1) (o) () (o)
— [ B[ Aapdxt)dx+ [ ([ Ahaxt)de+ [ Gi(T[ Ajdxt)ds
+(0) «(0) #(0) *(0) *(0) (o)

which is a special case of (2.5). Differentiating by 7 we obtain
dx* dx*
dt ]

([ Ahaet) G e[ Ana) G

which was to be proved. |}

fAjldx = Ajy—-— IZ’;[ fAjld‘:r r,f,[ fA ,d.\"‘]‘:!—f-}-
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4° The equality
0 dx* :
(4.4) [ Vo A5 dxt = A ——+ T
(0)

holds, where T is a tensor field parallel along the curve 7(7), if and only if 7(¢) is a
geodesic line.

PRrROOF. As in 3° we shall assume that r=1 and s=2. Using the property 3°,
from (4.4) we obtain

1)
dx*
Vo Th = Veo| [ (o Al et — 4 2] =
o(0)
dx* dx* dx*
= (Vi) AJI)_‘__(Vf(I) A "_'_Aﬂvi(l) ¥ gk — Ay Vi (1)

We see that the tensor field T is parallel if and only if Vi, #(¢)=0, i.e. z(f) is a ge-
odesic line. J§

5° If the affine connection I" admits parallel metric field g;; (torsion tensor may
not be equal to zero), then the metric tensor behaves as a constant for contravariant
integration satisfying property 2°.

This property is an immediate consequence of 3°.

6° Contravariant integration commutes with the contraction for any of the
indices #,, ..., 1,, k with j, ..., Jj,-

This can be seen direclly from the (2.5).

7° Let the tensor field 4 f' f be symmetric (antisymmetric) with respect to two

lower or upper indices. Then f Ail i ;. dx* is also symmetric (antisymmetric) with
respect to the same indices.

Proor. For example, let 4;; be an antisymmetric tensor field. Adding the equa-
tions

[Aydxt = [ A det— [ T5 (7 [ 4ydx*) dx+

+ [0 [ Ayyax)dx + [ 15 (7 [ Audx*)dx
[Audt = [Audt—[ 14 (" [ A4pdxt) axt+

+ [ i [ Audx¥)dxs+ [ 1% (" [ 4;dx) dx

and

we obtain the relation

(4.5) Wy = = [Ihyhde+ [T de + [ Tiykdx,
where

)’:"j — Af Afjd.\‘k+ Af Aﬂd,\"‘

The system (4.5) can be considered as a Volterra system of integral equations for
¥¥j. Thus the solution of (4.5) is unique. However y};=0 is also a solution. There-

fore
[Aydxt=—"[Audx*. |
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5. Geometrical interpretation

Independently from the previous results we shall now introduce an integral
operator independent from the choice of the coordinate system and we shall prove
that it is the same operator which we have introduced earlier.

Let A be a tensor field of type (r, s) along the smooth curve 7. At the points
7(0), t(t/m), t(2t/m), ..., ©((m—1)t/m) and (1) we consider the tangent vectors to
the curve 7

t T 14
Xg = g i’(O)ET;(o}(M)e X, = m t (;;-]E?'mm(M).-

t t t
PN -"Tf[(m— 1);]57;“,,,_,),,,,,,(M) and X, = — (€T (M)

Let (s} denote a parallel displacement from the point 7(a) to the point 7(b) along
the curve 7. It can be proved that there exists the following limit

(5.1) lim [0 A® Xo+ QL™ A® Xy + ... + Q™ AB X,y + AR X,]

In fact the term in brackets is a tensor of type (r+1, 5) at the point 7(#), and so the

limit (5.1) defines a tensor B j (t(t)) of type (r+1, s) at the point (7).
Now we shall prove lhe followmg equality

(1)

(5.2) [ Ak dxt = BEHE (2(v).
t(0)

This equality is obviously satisfied for r=0. So it is sufficient to prove that

1)

Vi ﬁf y ’d‘ = Vi B.h ,_(r(l))
©(0)

From (5.1) and (4.3) we obtain

Vi B 1) = {im [osgmoorm 5« (10| pieqey| )

= {’}'1__"3“ [Pzl ™0™ (@i (tm+1)/m A ® Xo+ PL i ims 1y /m A ® X7 +

JI. J's

+‘P:{::m+l)fm)A®X +A®XM+1)—~((;J§}?,]A®X0+

+rp:{:;"')A®X1+ -+ AR X)) ’—"} =
Jyse+dy

o g

m ¥

{llm QO'"(”'+”'“")(A®X,H+1) ___} =

dy--dg

dx* s fll X
7_Vﬂ,, [ Afh dx

t(0)

= (4@t = 4577,
and the proof is finished.
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