Evaluation of the dedeterminant and the permanent of certain
matrices

By B. GYIRES (Debrecen)

Summary. In this paper we deal with finite matrices, which have same elements
in the diagonal, over the diagonal, and under the diagonal, respectively. Such a
matrix is said to be a pseudo diagonal matrix. We formulate each general theorem for
the determinant, and for the permanent of these. Thus we obtain procedures to eval-
vate determinants, and permanents, respectively. Among others we derive a
procedure to trace the evaluation of the permanents back to the evaluation of
determinants. We make a detailed study of the special cases when the addition of
pseudo matrices is symmetric, skew-symmetric, and skew, respectively. Finally we
determine the permanental roots of the skew-symmetric Jacobi matrices in special
cases.

1. Introduction and the general theorems with proofs

Denote by E the current unit matrix. Let A be a finite square matrix with real or
complex entries. The roots of the equations

Det (A+AE) = 0,
and
Per (A+4E) =0

we say to be the eigenvalues, and the permanental roots of the matrix A, respectively.
The following polynomials play a role in the formulation of the theorems.
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Definition 1.1. Let n=2 be an integer. The nXn matrix B,=(a;)] is said to
be a pseudo scalar matrix generated by the real or complex numbers a, b, ¢, if con-
ditions

(1.1) agy=a; ay=>b, i=j; ay=c¢, i<j ({,j=1,..,m)

are satisfied.
The two general Theorems, which have an importance in Section 2., are the
following.

Theorem 1.1. If B, is a nXn pseudo scalar matrix generated by the numbers
a, b, c, then
(1.2) Det B, = (— l)RD(“)(mla Wy, ..., ),

where @, is an arbitrary eigenvalue of the pseudo diagonal matrix B, also generated by
the numbers a,b, ¢, with k=1, ....n

Theorem 1.2. Under the assumption of Theorem 1.1. we get
(1.3) Per B, = (—1)"'D™(2,, Ay, ..., 4,)

where A, is an arbitrary permanental root of By.
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Proor. Since w, and 4, is an eigenvalue, and a permanental root of B,, respec-
tively, we have

k
=0

k
Per (By+ A E) = 3 [ﬁ] M~ iPerB; =0

Jj=0
(k — 19 seey n)s

which are linear equation systems for the unknowns Det B; and Per B; (j=1, ..., n),
respectively. Solving these for Det B,, and for Per B,, respectively, we get solutions
(1.2) and (1.3) after elementary determinantal transformations.

The use of Theorem 1.1. is mainly that the determinant of the left hand side of
(1.2) can sometimes be evaluated easily, thus the value of the determinant on the
right hand side is known too.

However the use of Theorem 1.2. is in fact that the evaluation of a permanent
can be traced back to the evaluation of a determinant. This circumstance has an im-
portance, since the evaluation of a determinant of a given matrix is an easier problem
than the calculation of the permanent of the same matrix. On the other hand it seems
that this process is difficult, since it is necessary to count the permanent roots, but
one only among the roots of B, (k=1, ...,n). This can be obtained in many cases
easily by an ad hoc consideration.

2. Applications of Theorems 1.1. and 1.2.

In this section we apply Theorems 1.1., and 1.2. in the cases when the pseudo-
scalar matrices are symmetric, skew, and skew symmetric, respectively.
2.1. The case of the symmetric pseudo scalar matrices
Let b=c in (1.1). Then
By =(a—-b)E+bM, (k=1,2,..),

where M, is the kXk matrix with all entrics 1. Since the eigenvalues of B,
are —[a+(k—1)b], and b—a, we get the following result by Theorem 1.1.  choosing
o,=a, w,=b—a (k=2,...,n):

Theorem 2.1.1. If the symmetric pseudo-scalar matrices B, (k=1,2,...) are
generated by numbers a and b, then

D®(-a,b—a, ..., b—a) =—[a+(m—1)b](a—b)" !
Jor all positive integers n.
As special cases we get
D®(-1,1,...,1)=1=2n,
DR Y, s 1) = 1

3
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Theorem 2.1.2. If J, is an arbitrary root of the polynomial
k 2

o J1’

P(2) =

i=
then
D™ (2, ..o &) = (—=1)"nl.

Proor. If B,=M,, then Per B,=k!, thus

Per (B, +AE) = k! B,(%).

2.2. Skew symmetric, and skew pseudo-scalar matrices

In this section we deal with pseudo-scalar matrices, which are simultaneously
skew symmetric, and skew, respectively.

It is known, that the nXn matrix 4 is skew symmetric if 4*=— A4, or in other
words if A=iB, where B*=B. A* denotes the transpose of A4, and i is the imagi-
nary-unit.

From the Definition we get immediately that Det 4=Per 4=0 if » is an odd
positive integer. Let S;, and S, be the sum of the terms belonging to the even, and
to the odd permutations, respectively, in the expansion of Det 4. From the fore-
going we get S;=8,=0 if nis odd.

Similarly if 4 is a nXn skew symmetric matrix with real elements, and if —i4
is a nX n positive definite Hermite symmetric matrix, then Per 4<0 for n=2 mod 4,
and Per A=0 for n=0mod4.

It is obvious that the diagonal elements of a skew symmetric matrix are equal
to zero.

In the following we consider skew symmetric pseudo scalar matrices in the
special case when a=0, b=—c=1 in (1.1). We denote by A4, such a nXn matrix.
We have already mentioned that the determinant and the permanent of these matric-
es are equal to zero for odd n, and it is easiy to verify that their determinant equals
to 1 for even n.

Lemma 2.2.1. The eigenvalues of A, are given by

5 2k+1)m
(2.1) Wy = ttg(—2"+)

n—I1
[k=0, L, ...n—1; ks 5 ]

and w=0 is also an eigenvalue if n is odd. Moreover the components of the eigenvector
belonging to w, are given by

i
@ = (- ZEVT) 0 im0,

and if n is odd, the those of the eigenvector belonging to w=0 are
(2.3) W =1r® (G=1,..,n-1), —yO,
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Proor. Since
iy n n-k _ 30 1 n = I»
Det(A,+AE) = t=20 [2;‘]/1 k=] s [(T4+A)"+(1=2)",

where =0 if nis even, and d=1 if nis odd, the eigenvalues of 4, are the solutions
of equation

(2.4) 144 =(1-A)«

(except the eigenvalue A=0 in the case of odd n), where « runs over the numbers
: 2k+1

(2.5) ot = exp (ig), o, =KL

(k=0,1,..,n=1).
We have by (2.4)

(1+a)A = a—1,
and we got from here
(2.6) A cos -‘g- = 7 sin %
using known trigonometric relations, where ¢ is an angle from (2.5). If cos%: 0
then sin—=0 too by (2.6). But this is a contradiction, which can be occurred in

2
the case only if k= n;‘-l
of A, are equal to (2.1), and w=0 is also an eigenvalue if # is odd.
We will now proceed to determine the eigenvectors belonging to the eigenvalues
of 4,. If y=(y;) is an eigenvector belonging to the eigenvalue @ of 4,, then the

equation system

, 1.e. if n 1s an odd number. Thus by (2.6) the eigenvalues

(A, +wE)z =0

is satisfied. Adding the last equation to the previous ones, we obtain an equivalent
equation system

(2.7 =200+ ...+ tx-D)+H(@—=1) 5 =—(1+w)yx,
k=1 ces=1);

Since 1 is not an eigenvalue of A,, the determinant (w—1)""! of the equation system
(2.7) does not wanish. Using Cramer’s rule we get after conversions that

(2.8) -":?i"l o (it ey

are the components of the eigenvector belonging to the eigenvalue w of A4,. If we
substitute w=w, defined by (2.1) and w=0 in (2.8), then (2.2) and (2.3) give us
the components of the vectors belonging to @, and to w=0, respectively.

By Theorem 1.1. and by Lemma 2.2.1. we get the following
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Theorem 2.2.1. If w,, is taken from

ig&EVE (jo0,1,..,2-1),

then
Dssﬂ (wg. w4, eey 0)3,) = (— l)v

holds for all positive integers v.
Theorem 2.2.2. If wy ., is taken from

.. 2j+D= " ol
0,itg gl (=01, 26 j %K),
then

D"V (g, W5, vvy Wgy41) =0
holds for all positive integers v.

By Theorem 1.2. we get similar Theorems, but we did’nt know explicity the per-
manental roots of A, in these cases. It is a conjecture that 1 is a root if n is even. Thus
we have the following two statements:

Theorem 2.2.3. If Ay ., is an arbitrary permantal root of Ay .., then
DR A oves Aeiia) =0
holds for all positive integers v.
Conjecture 2.2.1. The identity
Per A,, = (-1)'D§™(1, 1, ..., 1)

holds for all positive integers v.
In the following we consider the skew matrix 4,— E. If o, is an eigenvalue of
this matrix, then

e _ (k+Dn

wn=l+‘t8¢x=ws Vi o

[k=0, R Ol ";1 ]

and 1 too is an eigenvalue if n is odd. It can be verified easily that
Det (4,—E) = (= 1)"2"-1,
By Theorem 1.1. we get the following statement:

Theorem 2.2.4. Let w, be an value from

o @3] el B

(j=0, (g 8, [ j;e-’.‘-Zz‘-l-]



Evaluation of the dedeterminant and the permanent of certain matrices 217

(adding to these the number 1 if k is odd). Then
D™ (e, , @, ..., @) = 21

holds for all positive integers n=2.

3. Matrices of the Jacobi type

In this section we deal with the permanents and with the permanental roots of
Jacobi matrices.

It is known that the eigenvalues of a skew symmetric matrix with real entries
are imaginary numbers. At the some time we do not know much about the permanent,
in particular about the permanental roots of matrices, especially of skew symmetric
ones. But more can be said if matrices of Jacobi type are considered.

Let n be a positive integer, and let

ajs bk! Cy (j — 15 weey N5 k = 1! sery ﬂ—'l)
be real numbers. As it is known, the matrix

Jo = (@)t
with
a;=8;, Gy.n=b;, a_;=c
ap=0 for |j—k|l=2
is said to be a matrix of the Jacobi type. Introducing the notation
Pi(A) = Per(JL,+1E) (k=1,....,n), Pyd) =1,

it can be shown ([1], p. 77) that the relation

(3.1 P(2) = (a+2) Py (A) + bi—y €k -y Py—s(4)
k=2,..n)
holds.
In the following we consider only the case when
(3.2) ey <0 (k=1,...,n-1).

Thus by (3.1) the same can be said about the roots of F,(1)=0 as about the roots of
Det (J,+AE) =0

if in the last equation J, is a normal matrix, i.e. b,>0, ¢,>0 for k=1, ...,n—1.
Therefore the following statement holds ([1], p. 80. Satz 1.):

Theorem 3.1. Assume that condition (3.2) is satisfied. Then the permanental roots
of J, are real numbers with multiplicity one.

Theorem 3.2. If the diagonal elements of J, are zero, then

0 .. . fodd
resls :{bl...b,,_lcl...c,,_l ¥n ”{even
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Proor. Under the given condition
(3.3) Py(0) = by_1¢x-1Pr-2(0)
holds for k=2,...,n. By (3.3)
P2v+1(0) = klI! bﬂczkpl(o)s

and
P, (0) = tI—I.; by -1 Cox—1 Py (0).

Since P,;(0)=0 and P,(0)=1, we obtain the statement of the Theorem.
We say that the matrix J, of Jacobi type is a skew matrix with parameters a and
b, if conditions
&h=a (k=1,..n).

(3.4) by=—¢,=b=0 (k=1,...,n-1)
are satisfied.

Theorem 3.3. If J, is a skew matrix of Jacobi type with parameters a and b, then
the permanental roots of J, are given by

K
Ax = 2bcos >

Pcoor. First of all we consider the polynomial P,(2). By (3.4) this polynomial
satisfies the homogenenous linear difference equation

=g k=1, 0k

(3.5) F,(2) = (a+2)F,-1(A)—b*P,_5(4)

with contant coefficients, and with initial conditions

(3.6) Py(2) =1, Py(2)=a+i

Substituting a+A=2y the characteristic equation of (3.5) is
22-2yz+4+b* =0

with roots

(3.7 7 =y+Vy-b, z3=y—Vy-b.

Thus

(3.8) P,(2) = Ciz1+Czi,

where the quantities C, and C, are independent of », but can depend on A. Taking the
intial condition (3.6) into consideration we obtain by (3.8) that

2/ -B P, () = A4 —Z*,
(3.9) A=2y—a.
The roots of (3.9) are those of the equation

(3.10) y+Vy =8 = (y—Vy*-b*),
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where

2kn
o = exp{ — 1} (=1 oo 1)

In the case of k=0 we get from (3.10) that y=+£b, which are the roots of the
first factor of the left hand side of (3.9). Thus the roots of P,(4) can be obtained by
(3.10) if & runs over 1, ..., n. Since o, for k#0 is a complex number, the equality
(3.10) is satisfied if and only if y*<b% Using the substitution y=cos 7, we have by
(3.10) that

kn
n+1

i.e. the permanental roots of J, are the numbers defined by Theorem 3.3. It can be

= i (k=1,...,n).

verified easily that all these numbers satisfy the equality P,(1)=0.
By Theorem 3.3. we have the following results:

Corollary 3.1. IfJ, is a nXn skew matrix of Jacobi type with parameters a and b,
then

PerJ, = JT [a—2b ]
er x‘_,—-I: a cos A

(n=1,2..).

Corollary 3.2. If J, is a nXn skew matrix of Jacobi type with parameters 1 and
1/2, then
n+1

Perl, = 5 n=0,1,...).

PrOOF. A known identity says that

n—1
2= [T sin [x+k—"] = sin (nx).
k=0 n

From here
n—1 1
¢ g B ] sinﬂ = IimM = n
k=1 n x=0 sinx
Thus
2n—-1 kn n—1 kJT
92m—1 SiN —— = 2271 Sind® — = 271.
k{]l sin e kg sin e 2n

Using Corollary 3.1. we get for a=1, b=1/2 that

SN kn n+1
— n 2 -
PerJ, = 2 k_[_llsm sl - >

corresponding to the statement of Corollary 3.1.
The proof of the following Theorem is similar to that of Theorem 3.3.
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Theorem 3.4. Assume that the entries of the nXn Jacobi matrix J, satisfy the
conditions

{ak =a (k=1,...,n).
b=, =b>0 (k=1,...,a-1).

Then the permanental roots of J, are given by

¢ = 2ibcos -
n+1

=g (R=1, .00

It would seem that the permanental roots of all real symmetric matrices are
complex numbers, and those of all real skew matrices are real numbers. But this
statement is not true. It is not difficult to construct a counter-example.
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