Some Matrix Inequalities and Applications to Probabilistic
Inequalities

By THEODORE TOLLIS (Urbana, I11.)

Abstract. lf A (a;;) is an mX n real matrix, then let S(4) denote the sum of the entries of 4,
thatis S(A4)= z‘ ay;. The purpose of this article is to present inequalities involving the function

S(-)and ﬁmtc sequencw of matrices with positive real entries. Then, as an application, we show how
to transform these inequalities into probabilistic ones. The results so obtained are generalizations of
previous results of T. F. Mor1 and G. J. SzexeLy, and T. ToLLIs,

1. Introduction and notation

Let A=(a;;) be an mXn real matrix. Let S(A) denote the sum of the entries of
A, that is

S(A4) = 2 2 a;j-
i=1 j=1
In this article inequalities involving the function S(-) defined on matrices with posi-
tive real entries are studied. One of our objectives is to point out applications of the
function S(-) in probability theory.
Let M denote the class of mXn matrices with positive real entries and let R
denote the class of mXn random matrices with entries positive random variables. If
A=(a;;), B=(b;;) are members of M (or R), then

A =B means that a; = b,

for all i=1, ....,m and j=1, ..., n. (The relation = on random variables is used in
the usual sense.) Throughout this paper ¢ will denote a linear map from R into M
such that:
a) p(A)xp(A)=p(A*A) and
b) if A=B then ¢(A)=¢(B)
for all 4, BER, where * denotes the Hadamard (elementwise) product.

In §2 several preliminary results dealing primarily with the relation “="", the

Hadamard products and the function S(-) are obtained. % '» nﬁa
In §3 we are dealing with finite sequences of matrices Ay, .. .4,(, where A ER
(i=1, ..., k), and we find upper bounds for I] S(¢(4)) and Z S(:p(A,-)) Thls

1S accomphshed by applying the results from §2 In most of the mcquahtles we find
necessary and sufficient conditions for the case of equality.
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In §4 we prove that the expectation function E(- ) satisfies conditions a) and b)
of the definition of ¢. Hence, the inequalities of §3 are transformed into inequalities
involving expectations of positive random variables. In particular, the inequalities
of §4 are generalizations of old ones obtained by T. F. Mor1 and G. J. SZEKELY [4]
and T. ToLLis [6].

2. Preliminary results

Clearly S(-) is a linear map on M. Also, it is easy to see that the classes M and R
are closed under Hadamard products.

Lemma 1. If A,BEM (or R) then A*BEM (or R).
Also, the following two lemmas play a significant role in proving inequalities in §3.
Lemma 2. If A;,, BM (or R) (i=1,....,k) and A;=B,, then
Ayx.. %A, = By»..%B,.
Proor. Let k=2 Let A1=(g;), Agz(é:;), Blz(g_),-) and Bg=(l;(:;). By
assumption g,jég‘; and gjél(z for all i=1,...,n and j=1,...,m. Since
A;, B M, then if we multiply these inequalities, we obtain

1 @ (1) (2) X
a;a,; = byb,; forall i=1,..,n and j=1,...,m

Hence A;*A;=B,*B,. The result now follows by induction on k.
A similar argument yields the case where A4;, B;€R.

Lemma 3. Let A, BEM (or R). If A=B then
S(A) = S(B),
with equality if and only if A=B.
ProoF. Let A=(a;), B=(b;) be members of M or R. Since A=B then

a; = b;; for all i, ;.

Hence S(4)=S(B). For the case of equality, suppose that 4>B. Then a;<b;
for some i, j. Therefore S(A)<S(B). Hence the result follows.

Kantorovich’s inequality will be used in §3. We shall use a formulation of this
important inequality, due to CLAUSING [1].

k
Let O<M,=m;=M, (i=1,...,k). Suppose O0<g; (i=l,...,k), J a=1.
i=1
Set y;= 2> a; for Ic{l,...,k}. Let I,c{l,...,k} be such that
icl

m_%l = yf—-%‘ forall Ic{l,...,k}.
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Define
- (M, —M,)*
Cy(m, M) = 14y, (1=y;) S % A

Lemma 4. (Kantorovich’s inequality). The following inequality holds
k k a;
[ 3 am]| > 2] =coon, m),
i=1 i=1 M

with equality if and only if there is a subset I of {1, ...,k} such that 3 a;=1/2.
icr
Proor [1].
If n=2, then
(M;—M,)*

Cs(M]_, Mg) = 1+alaﬂ_ MIM’

Also, in the special case a,—=-,-lc— (i=1, ....k)

(My—M,)*

W—, if k is even

Cy(My, My) =1+
b 1) (M,—M,)? . :
Cs(M,, M) = l+[1— k“] MM, if k is odd.

Lemma 5. If A€M then
S(4)*

S(A*A) = T

with equality if and only if A=A, A=0.
Proor. The result follows from Cauchy’s inequality.
Definition: The numbers (a,),(b;) (i=1, ..., k) are similarly ordered if

(a;—a;)(b;—by) =0,
for all 7, j and oppositely ordered if the inequality is always reversed.

Lemma 6. Let (a), (x;), (3) (=1, ...,k) be positive numbers such that

gl,g.g

s &
i=1  Yi

Suppose that (x;), [ ] (i=1, ..., k) are similarly ordered. Then the inequality

holds.
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Proor. The left-hand inequality is Tchebychef’s inequality [2, p. 43].

a—][Zaxj]S

Using the arithmetic-geometric mean inequality in the left hand inequality above, we
obtain

ai*_—él.
1 Yi

l'-l

k 1 a k
() 12ax1=1,
i=1 yi i=1

hence the result.

3 Main results

We apply the results of §2 to find new inequalities involving the function S(-)
defined on M. The following is the first result of this section.

Proposition 1. For any sequence of matrices A,, ..., A, such that AfR

k
(i=1, ..., k) and for any sequence a,, ..., a; of positive numbers such that 3 a;=1,
the inequality i=1

k k k
M I Slp(Apye = kmn[ 3 af] [T Slo(Ai D)
holds, where A =% (A, +...+A).

PrOOF. Using the linearity of S(-) and ¢(-) we make the following steps

i=2k; e é';. SEZ?(;‘A mAZ))) ] S[ [;g; i S((;ij‘:/l)) ]]

=%S[“°[§k é S(;(:f:A))]] { [[.,.1 S((p(A *A))”* ]*2+

+1§.-§e=_=k M [ S(qo(A‘:;ﬁ))lfz = S((p(A‘jiZ))”z n} Y

- 5o [(Zospainy) I+

o lsigj'st o(4x4) [ S(tp(Af;Z))”z 7} S((p(Aa_,i ;{))usr}
@ " % S{“’ [[;_él % S(@(Afiﬂ))”? ]*2]}

o =zl Zesmrienr) e (Eesprem]
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(by the definition of ¢ and Lemma 3)

“) = TS [“’ [..ZI“‘ s(qo(A‘f;Z))m]r oy Lomgan2)

[ S(o(4) ]’
kmn i-l S(?(Ai*z))”s

S(p(4) ]""
kmn o 1 S(p(4xA))?

3
(by the arithmetic-geometric mean inequality).
This proves the validitity of our statement (1).
Corollary 1. For any sequence of matrices A, ..., A, such that A€M
k

(i=1, ..., k) and for any sequence ay, ..., a, of positive numbers such that 3 a;=1,
the inequality i=1

k k k
(6) IT S(A4)* = kmn( 23 af) [ S(AxA)~
i=1 i=1 i=1
holds, where

_ 1
A = T(Al'l'..-‘i'Ak).

If A,qy =...= A, for some permutation o of {1, ..., k}, then equality holds if and
only if A;=2I and a,-:TI{- (i=1, ..., k), where i=0.

Proor. If we restrict ¢ on M and if we take ¢(A4)=A for all Ac M in (1) we
obtain (6).
Next equality holds in (2) if and only if

(?) ai— _ aj
S(A* A2 ~ S(AxA)E
since S(A;%A;)=0 for all 1=i,j=k (Lemma 1).

Also, @(AxA)=¢(A)*@(A) since ¢ is the identity on M. Hence equality holds in
(3). Now, by the previous remarks and Lemma 5 equality holds in (4) if and only if

forall 1=, j=k,

k
(8) Sty il 0.

im=l
Then equality holds in (5) if and only if

S(4,) =...= S(4)),
and therefore by Lemma 3
Ay =...= 4.
By (8) we obtain that
Ay =L A=), .:kh
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where A=%. Hence, S(A;*A)=5(4,+A) for all 1=i,j=k and so by (7)
ag=a; forall 1=1i j=k

This completes the proof.
The following is an immediate consequence of Corollary 1.

Corollary 2. For any sequence of matrices A,, ..., A, such that AfM
(i=1, ..., k), the inequality holds

K k
:{]1 S(A)* = (mn)* 1{11 S(A4;*A),

where Z=£—(Al+...+/lk).
If we combine Lemma 6 and (4) we obtain the following result

Proposition 2. If A,,..., A, is a sequence of matrices such that AR
(i=1,...,k) and

[S(e(4)], [S(e(AxA)] (i =1,....K)

are oppositely ordered, the inequality
k x ~
©) (2 aiSlo( ) = kmn [T Slo (4, D)

holds, where Z=£— ¥ PR L
Proposition 3. Let A,,..., A, be a sequence of matrices such that AR
(i=1,...,k) and A,q)=...= A, for some permutation o of {1, ..., k}. Leta,, ..., a
k

be positive numbers such that D a;=1. Then the following inequality holds

i=1

-1 Cy(M,, M X =

> astpa) = MM 5 4 sio(am e,

=l (kmn 3 af)vz =1

i=1
1
where A =F(A1+'"+Ak)’ M,=S(¢(A4,0)) and M,=S(¢(4,u)). Equality
holds if and only if k is even, A,=...=A,=Ail and a1=..‘=a,‘=%, where 1=0.
Proor. Using the arithmetic-harmonic mean inequality in (4) we obtain
,  Slp(4xA))" S g

10 A% slpap) = %mn Z aF™

If A,;=A,, then A,;*A=A,;* A by Lemma 2. Hence, by Lemma 3 and the
properties of ¢ S[o(4,w)=S[@(4s)] and S[p(Ai* )= S[p (A ).
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This means that the sequences
[S(e(4sa))]s [S(@(Aey* D)2 (i =1,...,k)
are oppositely ordered and so Tchebychef’s inequality [2, p. 43] applies

A2
(11 (Zasrqo(AwA'n"*) 2 o AI)]]E >a S“;‘[‘;f(‘;‘))ll :

By Lemma 4 we have

< Cs(Ml ’ Mg_)
(12) ;.21 S[fp(Ae)I Zk’a;S[qo(Ai)] |
i=1

If we combine (10), (11) and (12) we obtain the result.
As in the proof of Proposition 1 equality holds in (10) if and only if 4,=...

.=Ay=AI and a,=...zak=%. Also, by Lemma 4 equality holds in (12) if and

only if there is a subset , of {1, ..., k} such that 3 a;=1/2. The last condition on
a;’s forces k to be even. icl,

If we consider the special case of Proposition 2 where a¢=%(i= P . 1

then we obtain an upper bound for S(¢(4)). In particular, we have the following
result.

Corollary 3. Under the assumptions of Proposition 2, the following inequality
holds

_ GC(M,, My)

Z’ Slo(AxA)JV2,

where Z:% (A;+...+ 4.

4. Applications

Let X=(X;;) be an mXn random matrix with X;; arbitrary positive random
variables with positive variances. Then, see e.g. [3], we have

E*X;=EX} forall 1=i=m and 1=j=n.

Hence E*X=E(X*X). Also, if Y=(¥;) is an mXn random matrix with ¥;
arbitrary positive random variables wnh posmve variances such that X=Y, then

EX;=EY; forall 1=i=m and 1=j=n
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Hence EX=EY. Thus, E(-) satisfies the same conditions as ¢(-) does. Therefore
the inequalities of §3 can be transformed into probabilistic inequalities. In particular,
Propositions 4 and 5 below are obtained from Propositions 1 and 3 respectively.

Proposition 4. Let XW=(X[P) (I=1,...,k) be a sequence of mXn random
matrices with X\ arbitrary positive random variables with positive variances. Let
k
ay, ..., a, be positive numbers such that >a;=1. Then the following inequality holds

i=]1

n k k m
> EXQ)a = knm(é: a}) 11=Il ( b EXV X)),

j=]_ i= j=l

DM

(13) 11 (

I=1 i

U
-
it

k
where X,-',-=—;l? > X9,
i=1

Proposition 5. Let XV=(X{) (I=1,...,k) be a sequence of mXn random
matrices with X{} arbitrary positive random variables with positive variances such that
XW=_.=X®_ Then, the following inequality holds

Z“! e EX'UE CS(MI! Ma)
1

k m n

) Y, )12
k(mn)'/* ,Z; ..gll j=1(EXU X2,

k m n m u
where XU=% Z Xl(})g M1= Z Z EXS‘) and ‘M2= Z 2 EXI'(})'
i=1 i=1j=1

i=} j=1

Remark. Proposition 4 is a generalization of an inequality obtained by T. F.
Mori and G. J. SzexeLy [4]. Also, Proposition 5 is a generalization of results obtained
by T. ToLuis [6].

Let A4;; (I=1,...,k and j=1, ....n) be an arbitrary double sequence of events
1(Ay)
P(4y) "7

] for /=1, ...,k in (13) (where I(4,;) denotes the indicator function of

in a probability space, P(4,;)=0 for all /,j. Replacing X=

I(Alu)
" P(A) ) : :
the event 4;;,1.e., I(4,;)=1 on the event 4;;and 0 otherwme) we obtain the inequality

1R Mdn A
I % 2 27,4y

I\

n*

which generalizes a problem conjectured by LASLETT and solved by T. F. Mor1 and
G. J. SzekELY in [4].
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