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0. Introduction

Many different approaches to orthogonally additive mappings are known, ac-
cording to different orthogonality notions, and most of them were made under cer-
tain regularity conditions. In [7], a kind of real orthogonality vector space (X, 1)
is considered. There it is possible to determine the general odd and the type of the
general even orthogonally additive mapping f: X—Y, respectively, where (¥, +)
is an arbitrary abelian group. Here the results in [7] are extended into different direc-
tions (cf. [8]): Scalar fields for (X, | ) other than R (sections 1 and 3); improvements
for the determination of the even orthogonally additive mappings (section 2); a
dependence of the set of orthogonally additive mappings f: X—~Y on the group
(Y, +) (section 4).

Throughout the paper, R, Q, Z, N°, N denote the sets of real, rational numbers,
integers, nonnegative integers, positive integers, respectively. For an ordered field
K, |al:=max {«, —a} (Va€K), K,:={2€K; a=0}, Ki:={acK; a=0}. If 4 is
a subset of a vector space, lin 4 stands for the linear hull (span) of 4. We use o
for the zero vector and 0 for both the number zero and the identity element of an
abelian group. The constant mapping with value ¢ is denoted by ¢. Finally, for any
abelian groups (X, +) and (¥, +), Hom [(X, +), (¥, +)] or sometimes more briefly
Hom (X, Y) is the set of all solutions of the Cauchy functional equation

© [ X =Y f(a+xy) = f(x)+f(x2) (Vx;, X,€X),

and g is called a quadratic mapping iff it satisfies the functional equation (parallelo-
gram law; Jordan — von Neumann identity)

(Q g:X-=Y; glx+x)+8(x3—x0) = 28(x1)+28(x5) (V X3, Xp€X).

1. K-orthogonality spaces and orthogonally additive mappings

We show that the field R (of real numbers) may be replaced by an ordered (i.e.,
totally ordered) field K, arbitrary for some of the results in [7] (see this section), euc-
lidean for others (cf. section 3).
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Definition 1.1. Let K be an ordered field, X a K-vector space with dimg X=2,
and | a binary relation on X with the properties

(01) x 10, ol x for every xcX;
(02) if x,yceX\({o}, x_Ly, thenx,y are linearly independent;
(03) if x,y€X, x Ly, then ax | By for all a, fEK;
(04) if P is a 2-dimensional linear subspace of X, xc€P, i€K,,
then there exists y€P such that x|y and x+y | Ax—y.
Then (X, 1) is called a K-orthogonality space (cf. [7], p. 35/36, Def. 1).

Definition 1.2. If (X, 1) is a K-orthogonality space and (¥, +) an abelian
group, then a mapping f: X—Y is called orthogonally additive iff

(%) S(x14x3) = f(x)+f(xy) for all x;, x,€X with x;1x,

(cf. [7], p. 37, Def. 2).

Thus the orthogonally additive mappings f: X—-Y are precisely the solutions
of the conditional Cauchy functional equation (*). The set of all solutions of (*) is
denoted by Hom, (X, Y). Clearly

(1) Hom (X,Y) c Hom, (X,Y).

Corresponding to Definitions 1 and 2, we also transfer Definitions 3 and 4 of
[7] (pages 38, 41/42). An inspection of the proofs in [7] then shows that

(4) Lemmas 1, 2, 3, 4, 8 and Theorems 5, 6 and Corollary 7 and Remark 5 of [7]
remain valid for K-orthogonality spaces.

In this connection, we confine ourselves to formulate explicitly the following extension
of [7], Theorems 5 and 6 and Remark 3:

Theorem 1.3. For any ordered field K, any K-orthogonality space (X, 1),
and any abelian group (Y, +), we have:
a) heHom (X, Y), h odd < hcHom (X,Y).
b) gcHom, (X, Y), g even = g quadratic.
¢) Hom, (X Y)=Hom (X, Y) < every even g in Hom (X, Y) is 0.
(For “<inc), let be feHom, (X, Y) and define g(x)—f(a)+f(— x) (V¥xeX).
Then gE Hom, (X, Y) even, and by hypothesis g=0, ie., f(—x)=—f(x)
(vx€X), and by part a) féHom (X.Y). Therefore Hom, (X, Y)cHom (X, Y),
and the converse inclusion is ensured by (1); cf. [11], Thm. 1.8).
The foregoing theorem is an invitation for further specification of Hom, (X, Y)
and Hom (X, Y) in special situations. This will be done in the following sections.
Unless otherwise stated, K will denote an ordered field, (X, 1) or X a K-ortho-
gonality space, and (Y, +) or Y an abelian group.

2. Improvements in the determination of the even solutions of (*)

It is important to note that we have “<« " in part a), but only “=" in part b)
of Theorem 1.3. This is not astonishing since (*) is in a way much closer to (C) than
to (Q). The more it is necessary to undertake special efforts for the determination of
the even solutions of (*). Lemma 2.1 below expresses that these solutions are sensitive
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in the respect that their behavior in a (possibly) small part of the domain space X
may determine them completely. It is therefore hopeless to think of constructing an
even g in Hom, (X, Y) by making independent choices on direct summands of X
and “‘pasting” these together.

Lemma 2.1. If gcHom, (X, Y) even and M is a 1-dimensional linear subspace
of X such that g|M is additive, then g=0.

ProoF. Let be xeX\{o}, M=lin {x}, z€X, and P a 2-dimensional linear
subspace of X with x, z€ P. By (04") there exists y€¢ P with x |y and x+y L x—).
(02) and x#o0 make the case y=o impossible, thus, by (02), x and y are linearly
independent, i.e., P=lin {x, y}. There are A, ucK such that z=/Jx+uy. (03) and
x+y Lx—y imply px+py | pux—py and then g(ux)=g(uy) (cf. [7], p. 39, step
(iii)). By x Ly and (03) we also have Ax L uy, so g(2)=g(Ax+uy)=g(x)+g(w)=
=g(ix)+g(ux). If y€K, we conclude from additivity of g|M and evenness of g
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=g(0)=0, hence g(z)=g(/x)+g(ux)=04+0=0. Since z€X was arbitrary,
g=0.

Definition 2.2 The orthogonality relation | of (X, L) is called
a) left-unique iff for all x¢ X\ {0} and z€X there is at most one a€K for which
ax+z1x,
b) right-unique iff for all x€ X\ {o} and z€X there is at most one €K for which
x 1 Bx+z.

(For these notions in connection with Birkhoff-James orthogonality in real normed
spaces cf. [3] (p. 273, Def. 4.1, 4.2; p. 268, Cor. 2.2; p.. 269, Thm. 2.3)).

Theorem 2.3. For any ordered field K, any K-orthogonality space (X, 1), and
any abelian group (Y, +), the following holds: If | is not left-unique or not right-
unique or not symmetric, then Hom (X, Y)=Hom (X, Y).

Proor. 1) Assume that 1 is not left-unique. Then there exist x¢€X\ {0},
z€X, and o,o'cK with ao" such that ax+4zlx and o'x+zlx For
u=('—o)x, w:=ax+z we have uc X\ {o}, o’x+z=u+w, wilx and u+wlx,
and therefore by (03) w L v and w+w | u; uis a nonzero o-element in the sense of
[71, p. 42, Def. 4b).

2) If L is not right-unique, an analogous argument leads to a nonzero o-ele-
ment u of X.

3) Let 1| be non-symmetric. Thus there are w, v'€X with v 1 u but notuw 1 v'.
By (01), u>o0. Let P be a 2-dimensional linear subspace of X for which u, v'€P.
By (4) and [7], p. 37, Lemma 1, there exists y¢ P such that « 1y and lin {u, y}=P.
Then v'=Au+puy for suitable 2, ucK. By (03) w1 uy, ie, ul —Au+v’. The

fact that not w1 v makes A=0 impossible, and by (03) we get u_l_u—-% v,

But from ¢ | u we also obtain —%v’ Llu, and v:——-—%v' now satisfies v | u

and u | u+v which shows that u is a nonzero g-element of X ([7], p. 42, Def. 4a)).

5
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4) In either case, u is a nonzero g- or o-element of X. Let be gc Hom, (X, Y)
even. By (4) and [7], p. 42, Lemma 8, g|lin {u} is additive. Lemma 2.1 and u#o
now imply g=0, and Hom, (X, Y)=Hom (X, ¥) follows from Theorem 1.3c).

Corollary 2.4. Let be (X, || . |) a real normed vector space with dimgy X=2 and
gy the Birkhoff-James orthogonality defined by

(BJ)) x, y€X; x1lgy:ex+pyl = lxll (VBER),

and (Y, +) an abelian group. Then each of the following conditions is sufficient for
Hom, (X, Y)=Hom (X, Y):

(1) || .|| is not strictly convex.

(i) || . | is not Gateaux differentiable at some nonzero element of X.
(iii) dimg X=3, and (X, | . |) is not an inner product space.
(iv) dimg X=2, and g, is not symmetric.

PROOF. (X, Lg,) is an R-orthogonality space ([7], p. 36, Example C). (i): By
[3], p. 275, Thm. 4.3, 1p; is not left-unique. (ii): By [3], p. 274, Thm. 4.2, 1, is
not right-unique. In these two cases, the assertion follows from Theorem 2.3, and for
(iii), (iv) we refer to [7], p. 47, Thm. 16; the proof for (iii) rests on Kakutani’s projec-
tion theorem which has no analogue for dimg X=2.

Remark 2.5. Corollary 2.4 improves [7], Thm. 16, but the case when dimg X'=2,
Lgy is symmetric and | . || is strictly convex and Gateaux differentiable at every
x€X\{o} remains uncovered, and this case does occur ([4], lower half of p. 561).
However, by a direct attack of 1z;,, G. SzaBO succeeded in showing that
Hom ()1’j Y)=Hom (X, Y) whenever (X, | .||) is not an inner product space ([11],
Thm. 1.8).

3. K-inner product spaces

In this section we generalize the classical inner product orthogonality ([7], p.
36, Example B) from the real case to that of an ordered field K. In order to stay within
the framework of Definition 1.1, we look for those bilinear functionals ¢: X XX—-K
for which the relation |, defined by

(2 X, YeX; xl,ye(x,y) =0
satisfies the axioms (01) to (04"). For orientation, we first make some remarks.

Remark 3.1. The property (02) of 1, dictates that ¢ be nonisotropic, i..,
that we have

(NI) xEX, 9 x)=0=2=0.

Remark 3.2. If X is a K-vector space with dimg X=2 and Hamel base {b;;
i€I}, and if the bilinear functional ¢: XXX ~—K is given by ¢ (b;, b;)=3d;; (i, jl)
(Kronecker symbol), then the property (04) for |, implies that K is euclidean.
that is that every nonnegative element of K is a square of an element of K ([12], p.
20). In fact, let be AcK, arbitrary, assume that 1,2¢7, and put P:=lin {b,, by}
and x:=b,. By (04') there exists y€P such that b, 1,y and by,+y 1, b,—y.
From b, 1,y we conclude y<lin {b,}, say y=ab, for a suitable «cK, ie.,
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by+abg 1, Aby—aby, @(by+aby, Aby—uby)=0, A—a*=0, Ai=u«®, which establis-
hes euclidicity of K.

Remark 3.3. Let be K=Q, X=Q? _‘P((fn Ga)s (1, 19)):=2&m—&amy (Vs 0,
1,2€Q). Then ¢ is symmetric and non-isotropic. Furthermore, let be P:=Q?3
e,:=(1,0), €;:=(0,1), and x:=¢,, A:=1. If y€Q? x1,y, then y€lin {e,},
and ¢(e, +uae,, e,—ae,)=2+0a® for all 2€Q. Hence there is no ycQ? for which
X1,y and x+yl, x—y, le., (04) is violated.

Remark 3.4. It may be shown by standard techniques in field theory that every
ordered field is contained in a euclidean ordered field. Every real closed field is eucli-
dean by the Euler—Lagrange Theorem ([13], p. 493). Of course, Q is not euclidean,
and here is the reason for the failure in Remark 3.3.

Lemma 3.5. If K is a euclidean ordered field, X a K-vector space, dimg X=2,
©: XXX~-K a non-isotropic bilinear functional, then ¢ is definite, and 1, satisfies
the axioms (01), (02), (03), (04"). (Cf. [10]). (X, L,) then is called a K-inner product
space.

Proor. (01) and (03) directly follow from bilinearity of ¢. — (02): Let be
x, yEXN\ {0}, ¢(x,y)=0, and assume linear dependence of x, y, say y=ax. Then
a#0, ap(x, x)=¢(x, ¥)=0, so ¢(x, x)=0, and (NI) implies x=o, a contradiction.
Thus, (02) holds. — (04'): Let be P a 2-dimensional linear subspace of X, x¢€P,
/€K, arbitrary. If Ax=o, then y:=o0 has the properties required in (04').
Now let be Ax#o, i.e., €K}, x#o0, so by (NI) ¢(x,x)#0. By y:=¢(x, )|P
we obtain a linear functional on P with =0 since Y (x)=¢(x, x)=0. Since
ker i is a 1-dimensional linear subspace of P, there exists »'¢ P\ {o} with ¢(x,y")=
=y (y')=0, ie., with x1,y. We then get

(3) p(x+ay, Ax—ay’) = Ap(x, x)+aio(V, x)—a*@(y, ) (vacK).

Since K is euclidean, ¢ is definite ([S], p. 12, Exercise: [6], p. 251, Lemma Ic)), so
that x#o, y'#0 imply ¢@(x, x)-@()’, y)=0. Therefore the discriminant é of the
right-hand side of (3) is positive, and since J3cK¥, the mapping a—(x+a)’,
/x—ny’) has two zeros o;, in K. For y:=o)" we then have x 1,y and
x+yl, Ax—y, ie., (04) holds.

The alternative | symmetric/non-symmetric will be important in the sequel.

Remark 3.6. a) If ¢ is symmetric, so is L,. b) The mapping ¢: R*XR*-+R
given by @(({y, Lo)s (11, 1)) :=Lima—Camy shows that the foregoing statement has no
converse; this ¢ violates (NI). ¢) If ¢ is non-isotropic and 1, is symmetric, then ¢
must be symmetric. In fact, let be x, y¢ X arbitrary. If @(y», »)=0, (NI) implies

o,y

: : _ ®(y.7)

to obtain ¢(z,y)=0, ie., z1,y, hence y 1, z, ie., ¢(», 2)=0, and this imme-
diately leads to o(x, »)=¢(y, x).

y=o, ie., o(x»=0=¢(y,x). If ¢@(y,y)#0, define z:=x—

Remark 3.7. 1f K is euclidean, X a K-vector space, ¢: XXX—~K positive de-
finite bilinear (but not necessarily symmetric), and p: X—~K is given by

4) p(x) = [o(x, x)]'/t (VYxE€X),

5.
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then the following facts are easily established:

(N1) p(0) =0; p(x)=0 forall xeX\{o};
(N2) p(2x) = |- p(x) forall A€K, x€X;
(N3) p(x+y) = p(x)+p(y) forall x,ycX;

(N4) [P+ PP +p(x—F = 2[p()P+2[p(»)]* forall x, yeX.
For the proof of (N3) we may use the symmetric positive denite bilinear functional

Y: XXX—~K defined by ¥(x,y) :=%[cp(x, »+e(y, x)] (vx,y€X) and the fact

that the Cauchy—Schwarz inequality is valid for  (but in general not for ¢; consi-
der X=R% (&1, &), (s 12)): =i 46102 +8ame). For K=R, p becomes an
ordinary norm on X, and its Birkhoff-James orthogonality (cf. Corollary 2.4 above)
coincides with 1, and therefore is symmetric while |, need not be so. Not only are
Ly and L, unequal in general, it even occurs that neither is a subset of the other
one (e.g., for the example ¢, above). But nevertheless such a (X, 1,) always satisfies
(01), (02), (03), (04") by Lemma 3.5, no matter whether the euclidean ordered field
K is R or not, and many different ¢’s may lead to the same 1, (cf. [9]).

We now come to the main result of the section which complements and generali-
zes [7], p. 43, Theorem 9:

Theorem 3.8. Hypotheses: 1) K is a euclidean ordered field. 2) X is a X-vector
space, dimg X=2. 3) @¢: XXX—~K is a non-isotropic bilinear functional. 4) (Y, +)
is an abelian group. Assertions: a) (X, 1,) is a K-orthogonality space. b) If ¢ is not
symmetric, then Hom (X, Y)=Hom (X, Y). c¢) If ¢ is symmetric, then g is an even
solution of (*) if and only if there exists I: K=Y additive with g(x)=I[[¢(x, x)]
(Yx€X) (cf. [10]).

ProoF. a)isensured by Lemma 3.5. — b) By Remark 3.6¢), 1, is not symmetric,
and the assertion follows from a) and Theorem 2.3. — c¢) By Remark 3.6a), 1, is
symmetric. If / exists, then Jo@(-, -) is even. x; l,x; implies x; 1,x; and
@ (X1 + X3, X1 +X) =0 (X1, X)) +@ (x5, Xy), i€, log(-, -)¢Hom, (X, Y); so far,
(NI) was not used. Conversely, assume that g be an even solution of (*). If u, veX
are such that @(u, u)=¢(v, v), symmetry of ¢ yields w+v 1, u—v, and as in [7],
p. 39/40, step (iii), we obtain g(u)=g(v). By Lemma 3.5, ¢ is definite, without loss
of generality positive definite. [: K, -Y is well-defined by

5 lo(u, ) = g(u) (YucX).

Let be x’¢ X\ {0} arbitrary. As shown in the proof of Lemma 3.5, verification
part for (04"), there exists '€ X\ {o} such that @(x,y)=0. Let be A, ucK,
arbitrary. Since (¥, x)>0, ¢@(3’,»)=0, the vectors x:=(}/p(x", x))/%x’,
yi=(u/e (3, y"))/2y’ are available, and ¢(x, x)=41, t,oSy, y)=pn, ¢@(x,»)=0, thus
also ¢@(y,x)=0. Hence ¢(x+y, x+J‘):r'-+f, ie, I(G+p=Ilox+y, x+y)]=
=(8)=g(x+)=g(x)+2(») =) =1[o(x, )] +o(r. M=1(A) +I(w), ie., Iis addi-
tive. Since K, — K, =K, there exists a unique additive mapping /: K—Y such that
I1K,=I ([1], p. 265, Thm. 2), and g(x)=I[¢(x, x)] (¥x€X) holds by (5).
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4. A dependence of Hom (X, Y) on (Y, +)

So far we considered how Hom (X, Y) depends on the domain space (X, 1)
(cf., e.g., Theorems 2.3 and 3.8) when (Y, +) is an arbitrary abelian group. In [7],
p- 39, Remark 2, we briefly looked at aspects of the dependence of Hom (X, ¥) on
(¥, +). This question will now be treated more systematically (Theorem 4.6 below).
We begin by some auxiliary statements which are formulated somewhat wider than
actually needed for Theorem 4.6. The first one is a preparation for dealing with the
even solutions of (*) (cf. Theorem 1.3b)).

Lemma 4.1. For any abelian groups (X, +) and (Y, +) and any quadratic map-
ping g: X—Y we have:

a) 2g(0)=0.
b) g(—x)=g(x) (Yx€X).
c) If g(o)=0, then g(nx)=n%g(x) (VxEX, VnecZ).

d) If Y contains an element c of order 2, then g(nx)=n*g(x) (Vx€X, vncZ) need
not hold.

ProOOF. a) Put x;=x,=0 in (Q). — b) Put x,=0, x,=x in (Q) and use part
a). — ¢) Clearly g(nx)=n’g(x) (vx€X, ¥ne{0,1}). If nEN is such that g(nx)=
=n’g(x), g((n—Dx)=(—1)g(x) (¥x€X), then g((n+1)x)=(n+1)%g(x)
(vx€X), thus by induction, g(nx)=n’g(x) (¥x€X., vneN®). Finally, if x€X,
ncZ, n<=0, then by the foregoing g(nx)=g((—n)(—x))=(—n)’g(—x)=ng(x). —
d) g:=c¢ satisfies (Q) but violates g(0)=0 as ¢#0, and g(nx)=c#0=n*c=n*g(x)
(7x€X, Yne Z even). (This shows how essential g(0)=0 is for the Z-homogeneity
of degree 2 of g).

The next result concerns the question of existence of nontrivial solutions of (C).

Lemma 4.2. For any abelian group (Y, +), the following statements are equiva-
lent:
(i) Hom [(Q, +), (¥, +)]#{0}. ,
(i) Hom [(X, +), (Y, +)]={0} for every Q-vector space X with dimg X=1.
(iii) Hom [(X, +), (Y, +)]#{0} for some Q-vector space X with dimg X=1.
(iv) (Y, +) has a divisible subgroup Y, different from {0}.

Proor. (i)=(ii): Let be X#{o} and {b;; i€cI} a Hamel base of X over Q.
Then I+#0, and we choose i,€I arbitrary. The mapping &: X—Q defined by
h(x):=¢;, for x= 3 &b; is an epimorphism from (X, +) onto (Q, +).% If

il
héHom (Q, Y)\{0}, then hohc¢Hom (X, Y)\{0}. — (ii)=>(ii): trivial. —
(iii))=(iv): For any h€ Hom (X, Y)\ {0}, h(X) is divisible since X is. — (iv)=(i):
Choose 3,£Y,\{0} and define fEeHom (Z, Yy) by f(q):=qy, (Vg€Z). Since, by
virtue of a theorem of R. BAER ([2], p. 99, Thm. 21.1; p. 105, Exercise 5), divisible
groups are injective, there exists feHom (Q, ¥,) such that f|Z=f, and f#0
ensures f#0. If finally f: Y, Y, then jofe Hom (Q, Y)\ {0}

Definition 4.3. An abelian group (Y, +) is called reduced if it has no divisible
subgroup other than {0} (cf. [2], p. 100).
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Lemma 4.2 concerns the functional equation (C); (iv) expresses that (Y, +)
is not reduced. We now develop (iv) into a direction relevant also for other functional
equations than (C).

Lemma 4.4. For any abelian group (Y, +), the following statements are equiva-

lent:
(iv) (Y, +) is not reduced.
(v) For every keN, there exists a sequence (y,) of elements of Y with the pro-
perties
(6) y#0; (n+1)*y,41 =¥, for all neN.

(vi) There exists a k€K and a sequence (y,) of elements of Y satisfying (6).

PrOOF. (iv)=(v): Assume that k€N arbitrary, Y, a divisible subgroup # {0}
of Y, and y,€Y,\{0}. Divisibility of Y, and an inductive argument immediately
provide a sequence (y,) satisfying (6). (v)=(vi) is trivial. (vi)=(iv): Let Y, be the
subgroup of Y generated by {y,: n€N}. y;#0 ensures Y,#{0}. Let be zcY,
arbitrary. Then there exist r¢éN and n,,...,n€Z for which z=my,+...+n,y,.
(6) implies y,_1=r"y,, y,_a=(—D",_1=C—=D5",, .. n=2*..r',=0Y,,
ie., z=m()y,+...+ny,=:qy,, ie., for every z€Y, there exist réN and ¢€Z
with z=qy,. Let be meN arbitrary. Since one of the integers r+1,....,r+m is
divisible by m, we get m|(r+1)*....-(r+m)*, say ms=(r+1)*.....(r+m)*, there-
fore z=qy,=q(r+1)*-...-(r+m)*"V, 4 m=qmsy, s, =m-4y, 1, With g5y, €Y.
Since z€Y, and mcK were arbitrary, ¥, is divisible.

Lemma 4.5. For any abelian group (Y, +), the following statements are equiva-
lent:

(vii) (Y, +) is reduced.
(viii) For any Q-vector space X with dimg X=1, any kN and any f: X—~Y
with f(nx)=n*f(x) (vx€X, vnEN) we have f=0.

PROOF. (vii))=(viii): Assume that there are X, k, f of the type required except
that f520. Hence there exists x,€ X with y,:=f(x;)#0. Define x,,,=(n+1)"'-x,
(vaeEN). Then (n+1)x,41=X,, (+1)*-f(x,.)=f(x), (n+1)*y,.,=p, where
Ya:=f(x,) (¥n€N), and by Lemma 4.4, (vi)=(iv), (¥, +) is not reduced, contra-
dicting (vii). — (viii)=(vii): Let X be an arbitrary Q-vector space with dimg X=1
and h€¢Hom [(X, +), (Y, +)]. Then h(nx)=nh(x) (Vx€X, ¥neN). By (viii) h=0.
By Lemma 4.2, (iv)=(iii), (¥, +) is reduced.

Theorem 4.6. For any ordered field K, any K-orthogonality space (X, 1),
and any abelian group (Y, +), the following statements are equivalent:

(a) Hom_l_(X, Y): {Q};
(b) Hom (X, Y)={0};
(c) (Y, +) is reduced. '

Proor. Since Q is a subfield of K, X may be considered as a Q-vector space,
and dimg X=dimg X'=2. — (a)=(b) follows from (1), and (b) =(c), (c) =(b) directly
from Lemma 4.2, (iv)=(i), (iii)=(iv), respectively. — (b)=(a): Let be
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gcHom, (X, Y) even. By (4) and [7] (p. 37, Lemma 2a) and p. 39, Thm. 6), g(0)=0
and ¢ is quadratic. Hence by Lemma 4.1c) g(nx)=n%¢(x) (vnEN, Yx€X). Since
we already know that (b) implies (c), Lemma 4.5, (vii)=(viii), guarantees that g=0.
Therefore, by Theorem 1.3c), Hom, (X, ¥)=Hom (X, ¥)={0}.
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