On =-t groups*

By PIROSKA CSORGO (Budapest)

In this paper we deal with r-groups, and we introduce the concept of n-t group.
We generalize the results concerning solvable t-groups for the case of m-solvable
n-t groups.

We recall the following definitions and theorems.

Definition. A t-groups is a group G whose subnormal subgroups are all normal
in G.

Definition. We say that a subgroup H of a group G is pronormal in G if and only
if for all x in G, H and H* are conjugate in (H, H*).
The following result is well known:

Lemma A. A subgroup H of G is normal in G if and only if it is both subnormal
and pronormal in G.

Lemma B. (PenG [1]). Let M be a normal p’-subgroup of G and let P be any
p-subgroup of G. Then P is pronormal in G if and only if PM[M is pronormal in G|M
In 1957 Gascuitz [2] proved the following

Theorem A. The subgroups of solvable t-groups are again t-groups.
In 1969 PengG [1] showed.

Theorem B. G is a solvable t-group if and only if all subgroups of prime power
order of G are pronormal in G.
In 1977 Asaap, M. [3] proved the following

Theorem C. If each subgroup of prime power order of G is pronormal in G and G’
is a n-Hall subgroup of G, then G is a solvable t-group.

The converse of this theorem is not true. AsAAD gave the following example:

G=AXB, where A4 is a quaternion group and B is an abelian group of odd order.

This theorem may be stated in the following more general form:

Theorem D. (PenG, T.: Personal communication)
Let N be a normal n-Hall subgroup of G. If G/N is a solvable t-group, and each sub-
group of prime power order of N is pronormal in G, then G is a solvable t-group.
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We prove that if the order of the group G is odd, then the converse implication
of Asaad’s Theorem also holds.

Theorem 1. Let G be a finite group of odd order. G is a solvable t-group if and only
if each subgroup of prime power order of G’ is pronormal in G, and G" is a n-Hall
subgroup in G.

For the proof we need the following Lemma.

Lemma 1. Let G be a finite group, G'<=G, PcSyl p(G), pen(G’), p#2.
Suppose, that each subnormal p-subgroup of Ng(P) is normal in Ng(P). Then either
P=G" or Cz(P)=Ngz(P) or both.

PrROOF. Obviously P is a t-group. As p#2, it is well known, that P is abelian.
Assume, that P£G’. Thus PG'<aG, whence Ng(P)G'=G follows by a Frattini
argument.

The Schur-Zassenhaus’ theorem implies that there exists a subgroup K such that
Ng(P)=P-K, P(NK=1. Denote PNG'=S. Clearly S#1. Obviously each ele-
ment of K induces an automorphism of P by conjugation, and clearly they induce the
identity on P/S. Applying a theorem of GLAUBERMAN [4] Cp(K)S=P follows. De-
note L=Cp(K). We distinguish two cases

a) Q(P) =L

In this case K=Cg(Q,(P)). As P is abelian, K=C4(P) follows. Thus Ng(P)=

b) Q(P)£ L
There exists a subgroup T such that

Q,(P) =[LNQ(P)]XT

If reT, r#e, then {(r)<s<aNg(P). By assumptions (r)<aNg(P) follows. Ob-
viously K£Cg((r)). Consider ucLNQ,(P), u=e. As |ur|=p, (ur)<s<aNg(P),
(ury<aNg(P) by assumptions. Let k€K be, such that, k€Cg(v) but k§Cg(r).
Since K= Ng((ur)), there exists a natural number m such that

(ur)* = (ur)", where 2=m=p—1 (k¢Cgq(ur))

Thus wr*=u"r™, whence w™ '=r*(r™)~* follows. As K=Ng((r)), r*=r", where
2=n=p—1. So u™l=r"" but @N{r)=1, thus ¥" '=e, a contradiction.
Now we turn to the proof of our theorem.

ProoF OF THEOREM 1. i, Assume, that each subgroup of prime power order of
G, is pronormal in G, and G’ is a n-Hall subgroup of G. Then G is a solvable -group
by Asaad’s Theorem.

ii, Conversely, suppose that G is a solvable 7-group. It is well known, that G is
supersolvable, and all its Sylow-subgroups are abelian. So G’ is nilpotent. Thus each
subgroup of prime power order of G’ is subnormal in G, whence it is normal in G by
assumption.

Lemma A implies, that each subgroup of prime power order of G’ is pronormal
in G. Now we prove, that G’ is a n-Hall subgroup in G. Assume, that there exists a
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Q€Syl, (G) such that Q%G’, QNG'=Q*#1. Using Theorem A, by Lemma 1.
Ng(Q)=Cs(Q). It is easy to see, that Ng(Q)G'=G, thus C;(Q)G'=G. As Q is
abelian and G’ is nilpotent, G'=Cg(Q*) follows. Thus Cg(Q*)=G. It is easy to
show, that there exists a subgroup T in G such that

G=TQ, T<G, T=G ad TNQO=0"

Since C;(Q*)=G it follows by the Schur-Zassenhaus theorem that there exists a
subgroup L in T such that T=LQ"*, and L<T. Itis easy to see, that L<G and
G=LQ. As Q is abelian therefore L=G’. Thus QMG’=1 contrary to the assum-
ption Q*#1.

We introduce now the concept of n-t group.

Definition. Let G be a finite group, ncn(G). G is called a n-t group if and only
if its subnormal z-subgroups are all normal in G.

We construct a n-solvable n-t group, which possesses a subgroup that is not a n-t
group. Let G be a finite group with following properties:

| = GG =Gy<xG;3; =G, G,/G, = P, PeSyl p(G)
Gy/Ge = Q, Q€Sylq(G), G,£Sylr(G)
P=PyX P, where |Py|=p and P, is abelian, G, - P, is a one step nonabelian group.
G, P, =G, XP,, PQ=PX0, G,Q=0G,x0

furthermore P, - Q is a one step nonabelian group.

Let n={p, q}. Itis easy to show, that G is a n-solvable n-t group. Let X be a
subgroup of P, such that X£P,, X£P,, |X|=p. We have X<P<aPQ. Suppose
X<PQ, X={(ab), where acP,, beP, a#e, b#e. Consider c€Q, c+#e. Then
(ab)°=a*b where a*cP,. On the other hand (ab)*=(ab)* where 2=k=p-—1
(c¢ Cg(ab)). Thus a*b=d'b*, hence (d*)~'a*=b*"! follows.

But {(a)N{)=1, so b*'=e, a contradiction. Thus PQ is nota =-t group.

In the following we shall derive some properties of n-solvable n-t groups. First
of all we generalize the result of Peng.

Theorem 2. Let G be a finite group, nn(G). Let N be a mn-solvable normal
subgroup of G such that (|G: N|,p)=1 for all pcnN\n(N). If G/N is a n-t group,
and each p-subgroup of N, where pcn is pronormal in G, then G is a n-t group.

For the proof we need the following

Lemma 2. Let U be a finite group, nn(u). Let L be a solvable n-subgroup of U
and L<a<aU. Suppose that each p-subgroup of L, is pronormal in U. Then L<U.

Proor. We argue by induction on |u|. The solvability of L implies, that there
exists a p-subgroup § |p€n| of L such that S<L. We have S<<U and S is
pronormal in U, hence S<aU follows by Lemma A. Set U=U/S, L=L/S. La<U
holds. With help of Lemma B it is easy to show that each p-subgroup of L is pronor-
mal in U. As |U|<|U|, L<U follows by induction. Thus L<U.

Now we turn to the proof of our theorem.
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Proor oF THEOREM 2. Let H be a n-subgroup of G, such that H<1 <aG. Obvio-
usly HNON<<aN. Apply Lemma 2. to N and HNN, we obtain HNIN<N. As
HNN<aN<G, using Lemma 2. to G and HNN, we get HNN<G.
(IHNN|, |H: HNN|)=1 by the conditions of the Theorem. The Schur—Zassenhaus
theorem implies, that there exists a subgroup K in H such that H=(HNN)K and
(HNN)NK=1. Clearly HNN<NK, H<<aNK. Obviously (|K|, |N|)=1. Using
Sylow’s theorems it is very easy to see that H<NK. We have

HN/N =~ HIHNN =K

As H< <G, therefore NH/H<<aG/N. G/N is a n-t group by assumption, hence
HN/N<G|N, so HN<aG follows. Thus H<aNK<G. As HNN<=G, K is a
Hall subgroup in NK, using Sylow’s theorems it is easy to see that H<G.

Theorem 3. Let G be a m-solvable finite group of odd order, where ncn(G).
G is a m-t group such that each subgroup of G is again a n-t group if and only if each
p-subgroup of G’, where p€mn, is pronormal in G and (|G: G’|, p)=1 for all
penl n(G’).

ProoF oF THEOREM 3. First, suppose that G” satisfies the above conditions.
Theorem 2. is applicable with N=G’, thus we obtain that G is a n-t group. Let L
be an arbitrary subgroup of G. We have

LILNG = LG'/G’.

As LG'|G'=G|G’, L/LNG’ is abelian. Clearly (|L: LNG’|,p)=1 for all pcn.
Obviously each p-subgroup of LG’ — where pcn — is pronormal in L. Applying
Theorem 2. to L and LMNG’, we obtain that L is a n-t group.

Conversely, assume that G is a n-solvable n-t group such that, each subgroup is a
n-t group again.

a) Set S=G’, |S|=p*, pen.

We show that S is pronormal in G. Let xéG be arbitrary. Consider T=(S,5%).
If S€Syl,(T), then $*=8", where u€T. Thus we can assume that S<P* and
P*eSyl,(T). Obviously there exists a 7T such that §¥<P*, P*=PcSyl,(G).
We apply now the Theorem of Alperin [5] for G with S and S*. Thus there exist
elements x; and p-Sylow subgroups Q; of G. 1=i=n, furthermore an element y of
N (P) which satisfy the following conditions:

1) 2=, .. 2.9 y

(i) PNQ,; is a tame intersection, 1=i=n.

(iii) x; is a p-element of NG(PNQ)), 1=i=n

(iv) S=PNQ,, while Sx-x=PNQ;,,, where 1=i=n—1.

Clearly S<a<aPNQ,<aN;(PNQ,). By assumptions Ng;(P(Q,) is a m-t group,
hence S<aNz(PNQ,). As x€ Ng(PNQ,), S=S*. Similarly we obtain $*i-*=§.
Thus $¥=5" where yc Ng(P). Obviously S<<aP<aNg;(P). Since Ng(P)isa n-t
group, it follows that S<Ng(P). So $¥=S. Thus S*=5""and § is pronormal
in G.

b) Let rén(G’), ReSyl, (G). Assume that R£G’, then Ng(R)=Cg(R) by
Lemma 1.
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R is a t-group of odd order, so R is abelian. As Ng(R)=C;z(R), G has a nor-
mal r-complement K by the Theorem of Burnside. Thus RK=G, RNK=1, K<G.
Clearly G/K==R. As R is abelian, G’=K, whence G’(1R=1 follows, a contra-
diction. The proof is complete.
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