On ideals in over-rings

By A. D. SANDS (Dundee)

It is well known that the concept of ideal is not a transitive relation. In this paper
we consider cases when the transitive property does hold. We work in the category of
associative rings, but do not assume that each ring has an identity element.

We use the notation A<aB, A<a;B, A<a,B to mean that A4 is an ideal, a left
ideal, a right ideal of the ring B, A subring A of the ring B is said to be (left, right)
accessible in B if there is a chain of subrings

A=A0CA1C...CAN_1CAH=B

such that 4; is a (left, right) ideal of 4; ., for i=0,1, ..., n—1. We denote by (I, B)
the usual extension with identity of the ring B. If b(—' B we denote by (b), (b);, (b),
the ideal. left ideal, right ideal of B generated by b. The middle annihilator of a ring B
is defined by A,,"M(B) {b<B|BbB=0}. Z denotes the ring of integers.

Ring extensions were first considered by EvererT [2] and later by REpEn [6, 7],
and by HocuscHILD [3] and MACLANE [4], who used a homological treatment. An
account of Rédei’s work is to be found in his book [8]. More recently PETRICH [5]
has recast results of EVERETT and REDEL REDEI defines a double homothetism of a
ring B to be a pair of mappings (4, ¢), where /4 is a homomorphism of the right module
Bjg and ¢ is a homomorphism of the left module zB such that for all a, b¢B we have

(i) a(4b) = (a0)b,
(ii) (Ab)e = A(bo).

Here we are writing the mapping 4 on the left and the mapping ¢ on the right. If one
considers only pairs of homomorphisms satisfying (i), called bimultiplications by
MACLANE, they form a ring with respect to pointwise addition and composition of
mappings as multiplication. However the double homothetisms need not form a sub-
ring in this ring. Given a double homothetism (2, ¢) the subring of the ring of bimulti-
plications generated by (4, o) consists of all polynomials in (4, ¢) with integer coeffi-
cients and zero constant term. It is easy to verify that each of these is a double homo-
thetism. If B<aC then foreach ¢€C the pair of mappings (4., ¢.) given by A.(b)=cb,
(b) o.=bc, for each b€ B, is a double homothetism of B. Thus if 4<aB and JAC A,
Apc A for all double homothetisms (4, ¢) of B then 4<C for all over-rings C of B
such that B<aC. Rédei’s result is that the converse also holds. If H is any ring of
double homothetisms of B then the additive abelian group B@ H may be made into
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L, any two elements a, b of L can be used to define another operation on L as fol-
lows: x*y=XY where X, Y are the unique solutions of the equations Xa=x and
bY=y in L. (L, *)is a loop and is called a principal isotope of L. The representation
of (L, *) will be {R(a)"*R(u); u in L}. An autotopism of L is a triple (U, ¥, W) of
permutations of L such that for all x, y in L, (xU)(yV)=(xy)W.

General results

Proposition 1. The following are equivalent on any loop L:

(1) L is a right central loop

(ii) L is right alternative and for all x in L, x* belongs to the right nucleus of L.

(i) (Z, R(x)*, R(x)*) is an autotopism of L (Here I denotes the identity permu-
tation on L)

(iv) If A, B belong to R(L) then AB*® also belongs to R(L).

(v) L(x)R(»)*=R(y)°L(x) for all x, y in L (Here L(x) denotes left multiplica-
tion by x).

Proor. (i) implies (ii) has been noted by FENYVES [4]. To prove the converse,
note that (zy)x®=z(yx?) for all z, y, x in L since x* is in the right nuleus. By right
alternativity, the left side of this equation is ((zy)x)x and the right side is z((yx)x)
and the right central identity follows.

(i) implies (iv) because, if A=R(y) and B=R(x), then by the right central
identity zAB*=zC where C=R(yx-x). Thus AB? is in R(L). Conversely, if AB*
is in R(L) then it is equal to some R(t). So, t=eR(t)=eAB*=((ey)x)x=(yx)x.
Now for any z in L, ((zy)x)x=zA4AB*=zR(t)=zt=z((yx)x) so that L is a right
central loop.

(iii) and (v) are just restatements of the right central identity in appropriate
symbols.

Corollarry 2. Any loop of exponent 2 (i.e. each x satisfies x*=e) which is either
right alternative or has the right inverse property is a right central loop. Hence if the
representation of a loop consists of permutations of order at most 2 then the loop will
be a right central loop.

Proor. Follows from (i) and (iv) above.

Corollary 3. A Bol loop (resp. a right central loop) will be a right central loop
(resp. a Bol loop) if and only if, for all x in the loop, (R(x), R(x)L(x)~%, R(x)) is
an autotopism.

PRroOF. The autotopisms of any loop form a group. Further, a loop L is a Bol
loop if and only if (R(x)~*, L(x)R(x), R(x)) is an autotopism for all x in L.

(Theorem 2.3, RoBINsoN [7]). Hence the corollary follows from (iii) of Proposition 1
and the equation (R(x)"Y, L(x)R(x), R(x))=(R(x)", L(x)R(x)"Y, R(x)"1)-
(1, R(x)%, R(x)?).

Corollary 4. The following are equivalent on any loop L:
(i) Any loop isotopic to L is a right central loop.

(ii) For all A, B,C in R(L), A(B~'C)?® also is in R(L).
Any loop satisfying the above conditions is a Bol loop.
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PROOF. (i) implies (ii): The set {B~'D; D in R(L)} defines the representation o
a principal isotope L’ of L, for any B in R(L). If L’ is a right central loop, then
(B=14)(B~C)* is in R(L) for all 4,C in R(L), by (iv) of Proposition 1. Let
(B—'A)(B~'C)*=B~'D. Then A(B~'C)*=D belongs to R(L).

(i) implies (i): Let L’ be a principal isotope of L. Then R(L")={B~'D; D in
R(L)} for some fixed B in R(L). Let B~*A4, B~'C be two elements of R(L") with
A,Cin R(L). By (ii)), D=A(B~'C)* belongs to R(L). Therefore B~'D=(B~'4)-
«(B7'C)* belongs to R(L’). Thus L’ is right central.

If L satisfies (ii), then taking 4=B, we have CB~'C belongs to R(L) for all
C, B in R(L) which is equivalent to L being Bol (Theorem 1, BURN (3), I).

Lemma 5. The following properties are true in any right central loop L.
(i) For any element, the right inverse equals the left inverse.
(ii) If s is the square of some element of L and x is any element of L, then
(x9) 2=g"21x"1,
(iii) The order of any element is a divisor of the order of L.

PROOF. (i) Let y be the right inverse and z be the left inverse for the element x.
Then yy=ey.-y=(zx-y)y=z(xy.-y)=zy and so y=z.

(i) Since s belongs to the right nucleus, (s~'x™Y)(xs)=((s"x"Yx)s=
=(s"Yx"%))s=5"Ys=e.

(iii) As shown in Fenyves (4), Theorem 3, (xy™))y"=xy"*" for all x,y in L
and for all integers m, n. Using this, it is easy to check that the left cosets of any sub-
group generated by a single element form a partition of L. Since each member of this
partition will contain exactly the same number of elements as the order of the gene-
rator of the subgroup, the result follows.

Proposition 6. Any right central loop of odd order is a group

ProoOF. If 2n+1 is the order of the loop, then by (i) of the above lemma,
x¥*1=¢ for all x. Hence (x"*!)*=x for all x. Thus, by (ii) of Proposition 1, every
x belongs to the right nucleus and hence the loop is associative.

-

Construction

We now establish the following by suitable constructions:
(A) For every even integer 2m where m=3 there exists a non-Bol right central loop
of order 2m.
(B) For every integer of the form 4k where: k=2 there exists a non-Moufang loop
of order 4k which is both Bol and right central.
(C) For every integer of the form 2n* where n=2 and n#4,8 there exists a non-
Moufang Bol loop of order 2»* which is not right central.

Proor. (A) Let 2m=n+1 and n=2k+1 where k=0. Consider the set
X={e,0,1,2, ..., n—1} where e is an arbitrary symbol. For r=1 through n, let P,
be the permutation which is the product of the 2-cycles (e, r), (r+1, r—1), (r+2, r—2),
ooy (r+k, r—k) where all the integers are reduced modulo n. Let Fy be the idenity
permutation on X, Then the 2m permutations P;, i=0, ...,n form a right regular
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representation of a loop (X, .) of order 2m on the set X. This can be established
by verifying the conditions of Theorem 1 of BurN (3, 1) (It would be helpful to
consider 0, 1, ..., n—1 as points on a circle in that order and the 2-cycles in P; as
chords joining points symmetrically on opposite sides of the point i) The loop
(X, .) is right central since all the permutations P; are of order at most 2. But it is
not a Bol loop because 3P,P3P,=2k=3P, and 2P,P,P,=1+#2P, and hence
P, P, P, cannot be equal to any P; voilating the condition of Theorem 3 of Burn (3, I).

(B) We use a construction given by Robinson (8). Let G be a group generated by
two elements a, b such that a*=b*=1 and ab=ba. Let H be a cyclic group of order
k (k=3). Define a map f: G—~Aut(H) by f(1)=u, f(a)=f(b)=f(ab)=v where u
is the identity automorphism and v is the automorphism x-—-x~1. Now define a
multiplication on the set product B=GxH by (y, b)(x, a)=(yx, (f(x))(b)a) for
all y, xin G, b, a in H. Then B is a non-Moufang Bol loop of order 4k. It is obvious
that the square of each element of B has the identity as its first coordinate. Since any
such element lies in the right nucleus of B it follows that B is a right central loop.

(C) This construction is similar to the one in (B). Let G be the dihedral group of
order 2n with genrators a, b where a"=e, b*=e, ab=ba~'. Define f: G—~Aut(G)
by f(x)=the inner automorphism induced by x~'. Then the set G X G with the pro-
duct (y, b)(x, a)=(yx, f((x))(b)a) is a non-associative Bol loop and the subset
L={(d*p", b™d'), 0=k,I=n—1, m=0,1} is a non-Moufang subloop which is a
Bol loop of order 2n® Taking the elements x=(b, b), y=(a, €) in L, we get (xx)y*+#
#x(xy*) if nis not a divisor of 8. Thus y* does not belong to the right nucleus of L
and so L is not a right central loop.
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