A hybrid algebra with duality

By P. L. MANLEY (Windsor, Can.)

In the Jacobson point of view certain algebras derived from the original algebra
can best be studied by defining other binary operations in terms of the original product.

The objective is to study an algebra in which the product is replaced by a deri-
ved product which is defined in terms of the Jordan type and Lie type products.

The attempt is to develop the structure and the representation theory of the
algebra.

1. Definition

Let F be a field of characteristic not equal to two, and let L be a non-associative
linear algebra over F with identity.

The field F may be supposed to be a subfield of the algebra L with 0 and 1 as the
additive and the multiplicative identities of F and, hence, also of L.

Consider a set of elements x; and y; (i=1, ..., n) of L satisfying the operation
(written: ) (called: square dot product) with multiplicative properties

—XuXis E2T o
) x;x,={x?io’ 7L Lt
. yjyis l.?éj "
(2) Vy;= {)’? i Tt Li=lun

(3) If p and q are elements of {1, ..., n}, if iy (k=1, ..., p) are different elements
of {1, ...,n}and if j, (k=1, ..., q) are different elements of {l, ..., n}, then

(25 (2 =(Z 3 x) =

p . - -
Zx,-k if {’k: k= 1. siig P} = {)‘k: k = 1, sisy Q}

= k=1
0 otherwise

(4) Multiplication is associative on the closure of {x;: i=1,...,n} under
multiplication.

(5) Multiplication is associative on the closure of {y;: i=1,...,n} under
multiplication.

©6) If n=1, x,#0 and y,#1, and if n=2, 3 x;0.

i=1
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It follows from (2) and (5) that, on the closure of {y;: i=1, ..., n} under mul-
tiplication, the operation is both commutative and associative.

Axioms (1), (2), (4) and (5) imply that the meaning of an expression like y, 57,
is clear without any parenthesis, and that, for example

xl xsxsx‘xl == 0
and
Y1VeVaVaVs = YVaVsVa-

Proposition 1. The x-products with the subscripts in their natural order), 1 and
the y-products are linearly independent.

Proor. This is an easy verification.

Proposition 2. The set C,I {xi, »:} generates a subalgebra C,(x,y) of the
i=1

algebra L over F consisting of all linear combinations of products of x’s only and of
products of y's only.

Proor. This is an easy verification.

By an abuse of terminology, we refer to the subalgebra C,(x, y) of the algebra L
over F simply as the algebra.

Definition. The algebra C,(x, y) over the field F generated by the set U {x:, ¥i}
and satisfying axioms (l)—(6) is called NI-algebra.

The NI-algebra C,(x, ) is commutative if n=1 and non-commutative if n=2.
The following is an example of an algebra L which has elements Xx; and y;
(i=1, ...,n) with the properties (1)—(6).

Example I. Let P be the power set of {I,...,n}. Let a, (A€P—{p}) and
@4 (A€ P—{¢}) and B, (A€ P) be different things. (Thclr cardinality is 1+2(2"—1)+

+2") Let
= {a,: AcP—{p}}U{B,: AcP).
Define multiplication of elements of I" as follows:
4 if ANB=¢
if ANB=¢ and
2451 {{P: 4}: PEA, g€B, g—p < 0} has an even
Xy 0p =1 [number of elements
if ANB=¢ and

Zun\{{p> 4} PEA, gEB, g—p < O}
lhas an odd number of elements

x, if B=g¢
o,Pp = Psay =124 if A=B (hence B # ¢)
{ if B#0 and A#B

B.Bs = Bass where 4 is the symmetric difference.
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Let
(@y) =04
Let
X = d"}
Y™ ﬂ{i}

for i=1, ..., n. Then all the conditions are satisfied with the modification that O is
replaced by {, 1 by B, and —Xx; x; by X;X;. The operation defined on I’ so far can be
extended to an operation on

. {34: AcP—{o}}U{Q}Ur
in an obvious way.

Let L be the set of all mappings of I' into F(or of all I'-vectors with components
in F). Define addition and multiplication of elements of L in a suitable way. Then L
will become a non-associative ring having a subring isomorphic to F. If i€ {1, ..., n},
let x{ and y; be the I'-vectors defined as follows:

e L g
x;(?)—{o for yeI —{a)}

siw < f1. 1ot 7 = ﬁ{:}
Y = {0 for yer—{By)
Let 0’ and 1’ be the I'-vectors defined as follows
0’(y)=0 for every element y of F.

s . 1. SO0 Y=
””)‘{0 for yer:{ﬁ,}

(0 and 1 are, respectively, the additive and the multiplicative identities of F.) Then the
conditions are satisfied with x;, y;, 0 and 1 replaced by x;, x{, 0" and 1’, respectively.

Example 2. Let C,(x,y) be generated by

(=}

100 [ ]
1=J0o10], x=1|0 , p=
001 1

_—0 O
o O O
(= =]
SO e
_— O

Then by direct verification

(0 0 0
x2=J0 0 0
000
(100
P=1010
0 0 1)
000
xy=yx=x=1000
110
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2. Basis and dimension
The Nl-algebra is a finite-dimensional non-associative algebra.
Proposition 3. The basis of the algebra C,(x, y) is
{f. ¥: png;=0,1, i, j=1,...,n}
whose dimension is 2-2"—1.
Proor. An element of C,(x, y) is of the form
Za;x;+Zby;+

+ 2 aux‘-xj‘i‘ wee T al___,xl.. «Xp +
i=j

+ ‘Z; bijyiyj+...+by u1...yntcC

where a;, b;, c€F (i=1, ...,n) from which it follows that

{xP, Y§: poq;=0,1, 4, j=1,..., n}
is a basis of C,(x, y), and is of dimension 2-2"—1 since

2 3 [2]—1 -3,
k=1
3. Subalgebras
The C,(x,y) (k=1, ..., n) are subalgebras of C,(x, y). Let
Ci(x, y) = Cy(xy, y1)
Ca(x, y) = Co(xy, Xa5 Y1y V2)

Col, 1) = Xy s Xt Pisiy veis Pl
denote, respectively, the subalgebra generated by
{1, x1, y1}
[lr X1s Xas ylt}":’.t -\‘1x29 )’1}’3}
{-\‘F’s yj": Piq; = 0, 1, isj =1, con n}

The relationship between the Nl-algebra C,(x, y) and the Nl-algebra C,,,(x, y)
is as follows — wherefrom a certain structural duality is evident.

Theorem 1. The Nl-algebra C, . ,(x, y) is expressible as a square dot product of
the Nl-algebra C,(x,y) and

C,,H(.,\'.. y) = C,,(x, y)D{l! Xn+1s yll+1}
the subalgebra of C,.,(x.y) with basis {1, Xyi1s Vni1}-
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Proor. By properties of an NI-algebra the elements of the subalgebra C,x,+,
are the linear combinations of

- LS . AP, b 3. A0 IO

and the elements of the subalgebra C,y, ., are linear combinations of

Ya+1s V1 Va+1s ces ViVaVn+1s ---
Therefore

Cu+l(x9 }’) = Cn(-r'- y)+Cnxn+l+Cn.Vn1-l = C',,(x, )’)D{]a«\'nu; yn+l}

Theorem 2. The Nl-algebra C,(x, y) is expressible as a square dot product of the
x-subalgebra C,(x) and the

Cu(x, ) = Cy(x)OC,(»)
y-subalgebra C,(y).

Proor. The inequality
C,(x)OC,(y) = Cy(x, »)

is evident, and the reverse inequality follows from the fact that each element of
C,(x, y) is expressible (not necessarily uniquely) as a square dot product of an element
of C,(x) and an element of C,(y).

Corollary 1.

(@) Calxy, xy) = Cy(x))OC;(x2)

(b) Cy(xy, X3, X3) == Ca(xy, X2)AC;(x3)

(0) Cy(xys X5, %55 %) 2t Cy(3, %) C3 (%5, X0
Corollary 2.

(@) Ca(yy, ¥2) = C1(y)OCa(ya)

(b) Ca(y1; ¥2s ¥3) = Ca(y1, y2)OC1(ys)

(€) Ca(y1s Va5 Y35 ¥a) = Ca(yr, y2)OCa(ys, yo).

An Nl-algebra of any dimension is reducible to a square dot product of lower
dimensional ones.

Theorem 3. The Nl-algebra C,(x.y) for n=p+q is expressible as a square
dot product
Cn(xs .V) - Cp+q(x’ y) =

cle L0006 s X8 P YO0 (B aiin vvis Xab FPodai ori Vo)
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Proor. Without loss of generality letting n=4, then
CaX1s vvs X453 P15 coes Vo) = CalXyy o0y X)OCq (g5 o0y Ya)
= (Cy (%1, X9) OCs(x3, x9)) O(Ca(¥15 ¥) OCu(¥s, ¥4)) =
=t (C,(xl, Xg) 1Ca (¥, .Vs))D(Cz(xav x)OC;(ys, J’c)) o
= Cy(xy, Xa3 Yy, Y2) OCo(Xg, Xa3 V35 Vo)
This completes the proof.

4. Structure
Any NI-algebra has a direct sum decomposition.
Proposition 4. The Nl-algebra C,(x,y) has 2" pairwise idempotents.

PrOOF. Now
12+1/2y; = 1/2(1+y,)

(12+1/2y)(1/24+1/2y;) = 1/4(1+2y;+1) = 1/2+1/2y;

and similarly 1/2—1/2y; is an idempotent.
Now

and

‘1"11(1/2+1/2y;) =

=27"(14+n+...+ Yt Vs + Vst ...+ V1. V)

By the result just obtained, it follows that 1/2+1/2y; is idempotent, and this conti-
nues to be true if y; is replaced by —y; for some i of {1, ..., n}.

Proposition 5. The NI-algebra has pairwise idempotents e;, i=1, ..., 2", such that

2!‘
Z ei = l
i=1
and
eiej = 0. ‘. ?éj
where

e =2""(1+y+...+ st N Vst N Yst.ct Y100 V)
and e;,j=2, ...,2" is obtained by replacing some y; by —y; for some i of {1, ..., n}.
Proor. Let

(P13 -c0s Yo) = 2714+ 31+ .. Yt 1 V2t oo+ D12 00)

Then it is obvious from the above factorization that the e¢; are pairwise orthogonal
because
(1/2+1/2y)(1/2—1/2y) = 0

‘l’(yl, weey ylu yll+l)+l(yl‘l seny yns _yrH-l) _— J’(y]'.) seey yn)

and that
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From this equation it follows by induction that

"
Ze.' == l-
i=1

Proposition 6. The subalgebra X;, 1 =i=n, of the Nl-algebra C,(x, y) with basis
EXes X2 B X g N s ors Ko Bp s dnd
is a nilpotent two-sided ideal of C,(x, y).
PRroOF. Since
(a;x;+ayx; x4+ .. ) (b x;+ by x;x;4+..) =0
then it follows that
X(z = 0'

that is, X; is a nilpotent subalgebra. By the properties of the NI-algebra C,(x, y) it
follows that

Ci(x, )X = X;
and

Xicn(xs .V) = Xl"

Therefore X;, 1=i=n, is a nilpotent two-sided ideal of C,(x, y).

Proposition 7. The sum
N=2X
i=1
(1=i=n) is the nilpotent radical of C,(x, y), and the difference algebra

Cn(xs J’) — Cn(x’ ."")J/"Nr
is semisimple.

Proor. It is clear that N is a nilpotent two-sided ideal. There remains to show
that N is maximal.

Suppose to the contrary that M is a nilpotent two-sided ideal of C,(x, y) and
N-<=M. Then there is at least one element zéM such that z¢ N. Then z is of the
form

Z = C+Ea‘x‘+Zb‘yl‘+£aux;xj+£bijy‘yj‘i'...

But constant terms and the coefficient of terms with y are not all zero, and, further-
more, none of the powers of such elements can be zero. Therefore z is not a nilpotent
element, but this contradicts the assumption that M is nilpotent.

It is obvious that C,(x, y)/N is semisimple.

Theorem 4. The semisimple algebra
C.(x,y) =C,(x, y)/N
has pairwise orthogonal idempotents e;, i=1,...,2", that is,
2“

Zé‘ =T
i=1
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and
éiéj =0, f?fj

and the semisimple algebra C,(x,y) has a direct sum decomposition
Ca(x, ) = &C,(x, )&, ®... @8 C,(x, y)ep ~
~ C,(x,1)8,8...8C,(x, y)éy ~ F&,D ... ® Féyn

Proor. The first part of the theorem follows from Proposition 5, and the second
part follows from the structure theorem on semisimple algebra. Since C,(x,y)=C,(»),
C,(x,y) is a commutative, associative and semi-simple algebra, and hence the
direct sum of fields.

The following is the main structure theorem for an NI-algebra.

Theorem 5. The Nl-algebra C,(x,y) has pairwise orthogonal idempotents e;,
i=1,...,2", that is,

2"
Ze; = 1
fe=1
and
ee, =0, i#j

and C,(x,y) has a direct sum decomposition
C,(x,y) =~ C,(x,7)e,8...DC,(x, y)eyn =
>~ (e)P...B(eam)
where (e;) denotés the ideal generated by e;, i=1, ..., 2"

Proor. The first part of the theorem follows from Proposition 5.
For the second part of the theorem, since Theorem 4 yields the 2" direct-sum
components of .
Cr!(x? .l) 2 Cn(xv J’)*W

then the proof follows by a result of Deuring (cf. M. DEURING, Algebra, p. 16).
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