On finite right central loops
V. S. RAMAMURTHI (Jacksonville, Fl.) and A. R. T. SOLARIN (lle-Ife)

Abstract. Loops which satisfy the identity (zy-x)x=z(yx-x) are investigated.

Introduction. A set L is called a quasigroup if there is a binary operation (.)
defined in L and if the equation a-b=c is uniquely solvable for the third element
when any two elements are given. A loop is a quasigroup which has a two-sided iden-
tity element. Loops whose elements satisfy the identity (ab)(ca)=(a(bc))a arose
in the geometric considerations of MOUFANG (5) and are known as Moufang loops.
Im similar considerations, BoL (1) encountered the identity ((ab)c)b=a((bc)b).
ROBINSON (7) called such loops (right) Bol loops and initiated an algebraic study of
such loops. Recently BUrN (3) and NienDERREITER and ROBINSON (6) have carried out
deeper investigations into the existence and classification of Bol loops of small or-
ders. It may be noted that the identities mentioned above have the following form:
both sides of the identity contain the same three letters taken in the same order but
one of them occurs twice on each side. Such identities are said to be of Bol—Moufang
type. A study of all possible such identities was undertaken by FENYVES (4) who called
a loop satisfying the identity ((zy)x)x=z((yx)x) (resp. x(x(yz)=(x(xy))z,
((zx)x)y=z(x(xy))) as a right central loop (resp. left central, central).

Among other things Fenyves established the following in his paper: (i) The
right central identity is neither implied by nor implies the Bol identity (ii) Any right
central loop has the right inverse property, is right alternative and the square of any
element in sucha loop lies in the right nucleus of the loop. (iii) For any two elements
x, y in a right central loop, the equation xy™.y"=xy™*" holds for all integers m, n.
This paper continues Fenyves's investigations. Several characterizations of right
central loops are given. It is shown that the order of any element of a right central
loop of finite order is a divisor of the order of the loop. It follows from this that any
finite right central loop of odd order is associative. In contrast, existence of non-asso-
ciative right central loops of every even order is established by a construction. Cons-
tructions for loops which are both Bol and right central and for loops which are Bol
but not right central are also given. The methods of this paper follow those of ROBIN-
SON (7) and BURN (3). For general information on the topic of loops and other binary
systems, see BRUCK (2).

Terminology. All loops considered in this paper will be of finite order. The sym-
bol e will denote the identity element. A loop L has the right inverse property if
(yx)z=y(xz) whenever xz=e; L is right alternative if (yx)x=y(xx) for all y, x
in L. The right nucleus of L is the subset {x: (yz)x=y(zx) for all y, z in L}. The
(right regular) representation of L is the set of right multiplications {R(«); u in L}
where R(u)(x)=xu for each x in L. This set will be denoted by R(L). Given any loop
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a ring defining multiplication by
(byy (44, Q1))(bss (2, Qs)] = (b1 by + A1 b3+ by 02, (241025, 01003))-

The result then follows from the remarks above. We have given this example explicitly,
although the result is due to REDEI, to compare it with the corresponding result for
one-sided ideals, given in Theorem 3.

We recall the definition of the centroid of a ring B. Let E be the endomorphism
ring of the additive group of B. For each b€B the mappings 4,, g, defined above
belong to E. The centroid of B is the set of all a€ E which commute with all these
mappings 4, 05, b€B. This is equivalent to o being a homomorphism of the bi-
module zBg. In turn this is equivalent to the statement that « will pair with itself
to form a double homothetism (2, «). The above extension then becomes the usual
extension of a ring by an element of its centroid.

It is well-known that 4<1B, B<aC, A*=A implies A<aC. One has CA=
=CA*cCBAcCBAc A and a corresponding result for AC. In a private communi-
cation PuczyrLowskr asked me whether the class of rings R such that A=~ R, A<B,
B<aC implies A<C contains any rings R with R*>R. Eventually 7 found an
example which was an extension of R& (R/R?) by Z, with multiplication defined in
an ad hoc manner, which showed that no other such rings exist. When he saw my
example Puczylowski was able to construct a better example, noting that the mapping
A from R®(R/R*) to itself given by A(a, r+R*)=(0,a+R* is an element of the
centroid. Using the extension C by this element one sees that if 4= {(a, 0)lacR}
and R®*#R then A>~R and AA¢ A. Thus if B=R®(R/R?) then A<B, B<aC
but A is not an ideal of C. In fact, in this case, it is possible to pair A with 0 so that
(24,0), (0,2) and (4, A) are each double homothetisms. Since A*=0 using (4,0)
the ring of double homothetisms consists of all mappings (ni, 0) n€Z. This gives
rise to the specific example C on the abelian group Z& R&® (R/R?) with multiplifi-
cation defined by

(m,a,,n +R2)("2~ dgy Fy+ R2).—_(0, a, as, n1a, + R?).

In this case 4={(0. a, 0+ R?*|acR} is an ideal of B={(0, a, r+R?|a, ré R} and
B<aC, while A is not a left ideal of C. If instead one uses (0, 4), 4 is not a right ideal
of C.

For left ideals one can consider the problem A<;B, B<5;C or the intermediate
cases A<aB, B<1,C and A=,;B, B<aC, asking in each case whether one has 4<,C.
An examination of the above proof and examples shows that in each case the same
result holds as for ideals. We may summarize these results as follows.

Theorem 1. Let R be a rng. Then the following conditions are equivalent: —

(i) R*=R,

(ii) A<B, B<C, A=R implies A<C,
(iii) A<aB, B<a,C, A== R implies A=,C,
(iv) A<,B, B<C, A=R implies A<,C,
(v) A<,B, B<,C, A=R implies A<,C.

where A, B, C may vary over all rings satisfying the conditions stated. There are corres-
ponding equivalent conditions for right ideals.
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It is well-known that if 4 is a semi-prime ideal of B and B is an ideal of C then 4
is an ideal of C. Thus if S is a semi-prime ring, A<1B, B<«C and B/A=S then
A<aC. At a conference in Eger, Hungary in 1982 the question was raised as to
whether there are any other rings S with this property. It follows from our next
theorem that there are such rings.

Theorem 2. Let S be a ring. Then the following conditions are equivalent:

(i) The middle annihilator of S is zero,

(ii) A<B, B<C, B/A=S implies A<aC, where A, B, C may vary over all rings
satisfying the stated conditions.

Proor. Let the ring S have zero middle annihilator. Let 4, B, C be rings such
that A<iB, B<C and B/A=S. Let A" be the ideal of C generated by A. Then
A*=(1,C)A(1,C) and, as in Andrunakievic’ Lemma, we have BA*B=B(1,C)-
-A(1,C)BCBABc A. It follows that A*/A is contained in the middle annihilator
of B/A. Hence A*=A and A is an ideal of C.

Now let (ii) be satisfied. Let K be the left annihilator of S. Let

S K 0 K
B"[o 0]’ A_[OO'

Then A<aB, B[A=S. By condition (ii) and Rédei’s results, 4 is invariant under
every double homothetism of B. Consider ¢: B—~B defined by

bal=10

?lo ol T lo o

for all x€S, y€K. A routine check shows that (0, ¢) is a double homothetism of B.
Since A is invariant under (0, ¢) we have Apc 4 and so K=0. There is a dual argu-
ment showing that S has zero right annihilator. Then SaS=0 implies Sa=0, which
implies a=0. Therefore S has zero middle annihilator.

Since we need the quotient ring B/ A4 there is only one corresponding problem here
for left ideals; for which rings § does A<1B, B<9,C, B/A=S imply A<,C?.
This time the answer is not the same as for ideals. There is no result for left ideals
corresponding to Andrunakievic’ Lemma and the following example shows that the
answer is the zero ring only.

Let S be a non-zero ring. Let

o [(1,05) g] s [(1:58) g] C'=[(1:S'S) g]

Then A<B, B<,C, B/A=S and A is not a left ideal of C.

There is a similar example, using rows instead of columns, for right ideals.

Having considered this question for fixed rings 4 and for fixed rings B/A it is
natural to consider it for fixed rings C/B. Again, however, a routine example shows
that the answer is the zero ring.

Let T be a non-zero ring.

= O7) 20 07) 4o
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where, in this case, by Z we mean the set of elements {(n, 0)|n€¢Z}. Then A<B,
B<C, C/B=T and A is not a left ideal of C. This example also shows that the ans-
wer is also only the zero ring in the corresponding problem for left ideals. A dual
example, using columns instead of rows, gives the same result for right ideals.

Recalling Rédei’s result that an ideal 4 of a ring B is characteristic if and only if
A is invariant under all double homothetisms of B we now consider the corresponding
results for one-sided ideals. E(Bg)and E(yB) denote the rings of endomorphisms of
the right B-module B and of the left B-module zB.

Theorem 3. Let A be a left ideal of the ring B. Then the following conditions are
equivalent:

(1) A€E(Bg) implies ,ACA,

(i) B=,C implies A=,C,
where C varies over all rings satisfying this condition. There is a corresponding result for
right ideals using E(gB).

Proor. Assume that (i) holds and let B be a left ideal of C. Let ¢£C. Define
Acby A.(x)=cx forall x¢B. Then A.€E(Bg). Hence cA=/,,AC A. It follows that
A is a left ideal of C.

Now assume that (ii) holds. Let E=E(Bj). Let C consist of all pairs (b, 1),
beB, /cE, where addition is defined in C pointwise and multiplication by

(b1, 44)(by, Ag) = (byby+ Ay by, by Ay + 2404),

where (by4;)x=b,(4;x) for all xéB. A routine verification shows that C is a ring
and that the mapping b—(b, 0) embeds B as a left ideal of C. By condition (ii) the
set {(a,0)|ac A} is a left ideal of C. Then (0, A)(a, 0)=(%a, 0) belongs to this set and
so AAC A for all A€E.

We may consider instead the situation where A<1,B but B is an ideal of C. Using
Redei’s methods we see that A4 is a left ideal of C, for all such C, if and only if 14c A4
for all double homothetisms (4, ¢) of B. Since a given mapping i¢ E(B;) need not
pair with any o€ E(gB) to form a double homothetism this condition is weaker than
condition (i) of Theorem 3. The following example shows that the corresponding sets
of left ideals in a ring B may be different.

Let F be a field. Let

00 FO F F
A_[FOJ B_[FO] C“[FF'
Then A is a (left) ideal of B, B is a left ideal of C, and A is not a left ideal of C;,.
However A is the Jacobson radical of B and, by the Anderson—Divinsky—Sulinski

theorem [1], if B is an ideal of C, then A is an ideal, and so a left ideal, of C,. Thus A4 is
invariant under every double homothetism of B, but not under every mapping

A€ E(Bg). So, for example, if 1 is determined by premultiplication by [g {l)] then 4
will not pair with any o€ E(zB) to form a double homothetism.

As is well-known every ideal 4 in a ring B with 1 is characteristic. Similarly
every left ideal A4 in a ring B with left identity element e satisfies the conditions of
Theorem 3. For if A€E(Bg) and A(e)=b then A(x)=Ai(ex)=Ai(e)x=bx for all
x€B and the result follows.
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We consider now rings C such that 4<aB, B<aC implies A<aC and the corres-
ponding cases for one-sided ideals. It is clear that these are the rings such that every
(left, right) accessible subring is a (left, right) ideal. The description of these rings
which follows is given in terms of elements and so it will not be as straightforward to
test a given ring to see if it satisfies these conditions as to test for the conditions in
Theorems 1 and 2.

Theorem 4. Every accessible subring of a ring C is an ideal of C if and only if
(c)=(c)*+Zc for all ccC.

Proor. Let every accessible subring of C be an ideal of C and let ¢€C. Then
(¢)*+Zc<a(c)=C. It follows that (c¢)*+Zc<sC. Since cecZc it follows that
(©)*+Zc=(c).

Now let (¢)*+Zc=(c) for every c€C. Let A<aB, B<aC. We need to show
that A<aC. Let D=(1,C)A(l, C) be the ideal of C generated by A. Then DCB,
D*c A, A<D. Let ccA+D>* Then Ccc(c)=(c)*+Zc. Now (c)¢D and so
(c)*c D2 Therefore Ce=(c)*+Zcc A+D* By a similar argument c¢Cc A+ D2
Therefore A+ D? is an ideal of C. Since Ac A+ D*c D it follows that A+D*=D.
Then D?=(A+D?**c A+D*=A. Hence A=A+D*=D and A<=C.

Theorem 5. Every left accessible subring of a ring C is a left ideal of C if and only
if (¢)i=(c*)+Zc for all ccC. There is a corresponding result for right ideals.

ProOOF. Let every left accessible subring of a ring C be a left ideal of C and let
¢€C. Then (¢*);+Zc<,(c);<9;C. Therefore (¢*);+Zc<,C. Since c€Zc it follows
that (¢*),+Zc=(c);.

Now let (¢),=(c*);+Zc for all c€C. Let A<,B,B<,C. Let ac A, ceC.
Then cac(a),=(a*,+ Za. Therefore there exist dcC, m, n€Z such that ca=da®+
+ma®*+na. From dacB it follows that da*c A. Therefore cac A and A is a left
ideal of C. It follows that every left accessible subring of C is a left ideal of C.

We note that Theorem 4 involves the square of the ideal generated by ¢, while
Theorem 5 involves the left ideal generated by the square of ¢. One of our previous
examples shows that these differences are essential. As before let F be a field and let

00 F 0 F F
A=[F 0] B_[FO] C_[F F
C is a simple ring with 1. Hence every accessible subring of C is an ideal of C. If

"‘_‘[(1) g]’ then a*=0 and (a%)+Za#(a)=C. A<;B, B<,C but 4 is not a left ideal

of C. For any left ideal D of C we have D*=D and so (¢),=(c)}=(c)+Zc. So
neither in Theorem 4 nor in Theorem 5 can one condition be replaced by the other.

Finally we consider some open questions. Given rings R, S, T we have consi-
dered A<aB, B<aC where A=R, B/A=S, C/B=T. In Theorems 1 and 2 and
a remark after Theorem 2 we have found conditions for this situation to imply 4<C,
firstly for fixed R and all S, 7, then for fixed S and all R, 7, and then for fixed T
and all R, S. It seems natural to ask the same questions for fixed pairs of rings from
R, S, T and then for three fixed rings. Satisfactory answers to these questions have
not been given so far. We make some observations now on one of them. For given
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rings R, § when does A<aB, B<C, A=R, B/A=S imply A<C? By Redei’s
results this is equivalent to the statement that R should be characteristic in every
extension by S of R. Given the above situation and an element c£C, left and right
multiplication by ¢ will induce mappings A and ¢ from R/R*to §. A<1B induces an
S-bimodule structure on R/R®. It is easy to see that 1 is a homomorphism of right
S-modules whose image is in the right annihilator of S and similar results hold for g,
replacing right by left. Other elementary properties may be deduced but these on
their own are not necessary and sufficient for the above problem to be solved.
Consider the following examples. Let F be the field of two elements and let

F ¥
e [0 0l
First let R, be the trivial ring, i.e. Ri=0, on the additive cyclic group of order 2.
Then taking
F F
Al - Bl —_— 0 0

R
o
oo My
oM

FF F
00] C= 0
0 0 0FO
we have 4,<B, B,<C,, A,=R,, B,/A,=S. However A, is not a right ideal of C,
and if A (=0) is induced by left multiplication by ¢ and ¢ is induced by right mul-
tiplication by ¢, where

000
c=100 0
010

we have a pair of mappings 4, ¢ not both zero, from R,/R}=R, to S with all the given
properties. Now take R,=2Z. Then R,/R3=R, and so the same mappings 4, ¢
exist as above. Now suppose A<aB, B<aC with 2Z= A4 and S=B/A. Denoting
these isomorphisms by «, f let «2=a and ﬁ[é g]=b+A. Now 28§=0 implies
2Bc A. If 2b=ma where m is odd then a<2B andso 2B=A. Then B<C implies
A=2B<C. If 2b=ma, where m=2n, let f=b—na. Then 2f=0 and B[(]) g]:
=f+A. Now af, facA and from 2f=0 we have 2af=2fa=0. Since A==2Z
it follows that af=fa=0. Let c€C. Then ac€B and fac=0. Since f+ A is a left
identity element of B/4 we have ac—facc A. Therefore ac€ A. fee B implies facc A.
Since ca—fcac A we have cac A. It follows that 4<aC.

Thus we need conditions on R and S and not just the obvious conditions on R/R?
and § to solve this problem. Here § has non-zero left annihilator, isomorphic to
R/R?, but S has zero annihilator. If there is a non-zero homomorphism, for given rings
R, S, from R/R? to the annihilator of S then it is possible to construct an example.
Let A be such a mapping. Let B be the ring direct sum R$ S, with A4 the embedding of
R in this ring, so that B/4=S. For each (r,s)c¢R®S let A(r, s)=(0, A(r+R?)).
Then it may be checked that (Z, 7) is a double homothetism of R@ S under which A
is not invariant. Thus there exists an extension C of B, with B<aC, but A4 not an
ideal of C. However we have not managed to find necessary and sufficient conditions
for a fixed pair of rings R, S to imply the desired result.
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