The solution of the word problem in certain groups

By ARIE JUHASZ (Rehovot)

Introduction

In this note we investigate groups G having a presentation
(%) G=({x,y|xvym=ryuxn,i=1,2 ..k, kixl, ncZ
The main results are the following.
Theorem A. Let G be presented by (*). Then G has a solvable word problem.

The proof of the theorem relies heavily on small cancellation theory. In fact, the
theorem below reduces the problem to the case k=2 which is treated mainly by small
cancellation theory.

Theorem B. Let G be presented by (*) and assume that the n; are pairwise rela-
tively prime. Then G is abelian if and only if k=3. Moreover, if k=3 then G is free
abelian of rank 2.

Remark. With more effort the method of Theorem A solves the conjugacy pro-
blem too. This will appear elsewhere.
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1. The Abelian Groups
In this section we prove

Theorem 1. Let G={(x,y|xnyni=ynux%, i=1,2,3). If the n; are pairwise
relatively prime, then G is abelian.

We begin the proof with the following easy observation.

Lemma 1. Let G be a group generated by x and y and let S=S(G) be the set of
integers s for which x*y*=y°x* holds. Then

(a) s€S implies that sZSS and

(b) a,b, a+bcS implies a—beS.
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The proof is straightforward, hence we omit it.
Our aim is to show that if G is as defined in Theorem 1 then S(G)=Z. This
motivates the following

Lemma 2. Let S be a subset of Z which satisfies (a) and (b) of Lemma 1. If
a,b,a+bcS then aZ+bZCS.

Proor. We prove first by induction on n that
(*) a+nbesS.

For n=1 this is clear by condition (b). Assume (*) holds for all n=k. We prove it
for n=k+1. We have —beS by condition (a) and by assumption a+nb and
(a+nb)—b are in S. Hence by (b), a+(n+1)beS. Similarly, a—nbe S, beS and
(a—nb)+beS implies a—(n+1)beS, as required. Thus we have

(% %) a+bZeS,
and by symmetry
(% %) aZ +beSs.

Finally, we show that na+mb¢S for all n, mc Z. By (*##), na+bcS. Hence by
replacing a by na in (**), we get na-+mbc S for all n, mcZ, as required.

Lemma 3. Let a,b,ceS, O<a<b<c, (a,b)=(a,c)=(b,c)=1. Then there
exists a ¢’€S such that either ¢’=1 or (a,c)=(b,c)=1 and 1<c'<ec.

We divide the proof of the lemma into three steps.

Step 1. Let a,b,c€S and assume O<a<b<c, (a,b)=(b, c)=(a,c)=1.
Then there exists ¢’¢€S such that either ¢’=1 or (a, b)=(b, ¢')=(a, ’)=1 and
O=c"=(@—1)(b—-1).

Proor. If ¢=(a—1)(b—1) we are done. So assume c¢=>(a—1)(b—1), and c is
the smallest element of S with this property. Then by [1] or direct calculation, we can
write ¢=w0a+pb where a, f=0. But then aa—pbcS by Lemma 2, hence taking
¢’=|aa—pb| we obtain O0<c’<c and (a,b)=(a,c)=(b,c)=1. Assume ¢ #1.
Then by the minimality of ¢ we get ¢’=(a—1)(b—1) or ¢’<b. However, the second
possibility implies the first, i.e. in both cases we get ¢’=(a—1)(b—1) as required.

Corollary. Let a, b, ccS asin Step 1. Then we may assume that ¢=(a—1)(b—1).

From now on we shall assume that a, b and ¢ are positive integers which satisfy

(I) a, b1c€sja{b{c,
(i) (a,b) = (a,¢) = (b,c) = |,
(iii) c=(a—1)(b-1).

Step 2. There exist o, f¢ Z with |x|<b such that c=oaa+pb. Similarly, there
are y,0€Z with |8|<a such that c=ya+db.
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Proor. Let c¢=gqga+r, O<r<a. Then g<b. Since (a,b)=1, there exists a
natural number t<b such that 7(b—a)=rmodb, ie., r=t(b—a)—ub, uclZ.
Thus c¢=g—1t)a+(t—u)b. Clearly |g—1t|<b.

Step 3. Let c=oa+pb with |z|<b and let d=(aa, fb). Then (d, a)=(d, b)=
=(a,b)=1 and O=d=c.

Proor. Cleraly dle. If d=c then c|xa, fb. As (a,b)=1 we must have c|x
and c|f. But then O<c=|x|<b, contradicting c¢=b. This proves Step 3.
We turn now to the proof of the lemma.

By Step 1 we may assume c<(a—1)(b—1). Hence by Step 2 we may assume
c=aa+pb with |x|<b. Consequently by Step 3 with ¢"=d we get the result.

We turn now to the proof of Theorem 1. Let G be the group of Theorem 1 and
let $S=S8(G). We may assume n,<ny,<n,. Denote by r(S) the set of all the triplets
(a,b,c) such that a,b,c€S, a<b<c and (a, b)=(a,c)=(b,c)=1. Define
la, b, ¢|=a+b+c and assume that (a, b, ¢) is a minimal element of r(S') with respect
to|,,|. Since (ny, ny, n,)€r(S) such a minimal element exists. However, by Lemma 3
there exists a ¢’ such that either ¢’=1 or (a, b, ¢’) or (a, ¢/, b) or (¢’, a, b) belongs to
r(S) and a+b+c’<a+b+c. Consequently ¢’=1 and 1€S. But then S=Z
and G is abelian. This completes the proof of Theorem 1.

2. The Non-Abelian Case
In this section we prove the following

Theorem 2. Let G={(x, y|x"y"=)"x", x"™y™=y"x™). Then G has a solvable
word problem.

The proof'is by small cancellation theory. Let us fix some notation. For unexplained
terms see |2|.

Let F=(x,y) and let Ry=x""x""y"" and Ry=x"y"x""y~",

Let wé F be a reduced word. We shall denote by (w) the length i.e. the number of
letters in w. F also has the free product structure F=(x)#{y) and the corresponding
free product normal form. We shall denote by |w/| the free product length of w. Thus,

if w=xnyfix%. . yPa then |w|= 2 (x;+p;) while |w|=2n. In these terms we have
i=1

Lemma 4. Let G be as in Theorem 2 and let R, be the symmetric closure of R,
and Ry. Then there exists a symmetrical subset Z of F such that
(@) {x,y|#)=G;
(b) Z2R, and R is recursive;
(c) For every RER we have |R||=4;
(d) Let M be an R-diagram with labeling function ® and let D be a region in M.
(i) If u is a boundary path on dD which is a piece, then || ®@(p)|=1 and u is a
proper subpath of an edge e of dD with | ®(e)| =1.
(i) M satisfies C(8).

| N
(ii1) If vy, vy, vy are consecutive pieces on 0D then |v,v, Vsl*:i |0D| and if 0 is

the complement of v,vyvy to OD then | ®(0)| =3.
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Note that (b) and (d) (ii) solve the word problem (see |2|).

In the construction of # we apply a basic technique developed by E. Rips in his
fundamental work [3]. Let us recall this construction in a way most convenient for us.

Let M be an Z%,-diagram and assume that there is defined some equivalence
relation on the regions of M. For every equivalence class & let & be the interior of
the closure of the union of the elements of &. If for every equivalence class & we have
that §” is connected and simply connected, then the set of the & where & ranges over
all the equivalence classes of M gives rise to a diagram over a symmetrical subset 2
of F which contains #,. We call this diagram a derived diagram and the &’ the derived
region.

We turn now to the construction of the desired derived diagram. From now on
we set F=(x,y), R,=the symmetric closure of R,=x"y"x~"p~" and R,=x"y".
+x~™y~™ We assume m=>n. Let M be a connected and simply connected %,-
diagram.

DEFINITIONS.

1) Let M be an #,-diagram, let D be a region in M and let 9D =v, ey, e,v;,05€;0,
such that ®(e;)=®(e;)=x* and P(e;)=P(e;)=)*, where @ is the labeling function
and k€{*n, £m}). We call the vertices v,, v, v, and v; separating vertices.

2) Let e be an edge in M. We call e a standard edge if

(1) both endpoints of e are separating vertices, and

(i) P(e)=x*' or P(e)=y*' where Ic{l,2,...,m}.

A standard piece is a standard edge which is a piece.

_ Figure 1 below shows standard pieces, while Figure 2 shows a a non-standard
piece.
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Figure 1.
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Figure 2.

We are now ready to construct %. Thus let M be a connected and simply con-
nected #,-diagram. Say that two regions D, and D, in M with a common edge
are weakly equivalent if every component of their common boundary is a standard
piece. Let ** =" be the transitive closure of the weak equivalence defined above. Then
*“~" is an equivalence relation on the regions of M. Let Dy, ..., D] be the derived
regions with respect to “~:"" as described above and let M” be the corresponding
derived diagram. We have to show that

1) D/ is simply connected for every i, i=1, ..., r,

2) conditions (a)-(d) of Lemma 4 hold.

The next lemma is useful in showing that (2) follows from (1).

Lemma 5. Let D’ be a derived region of M.

(a) If e is a boundary edge of D" having endpoints with valency =3 (in M) and
such that |®(e)||=1 then e is a standard edge;

(b) If D’ is simply connected then | ®(0D")|=4.

The lemma follows by an immediate induction on the number of regions of D’
(as a subdiagram of M) and the fact that the sum of the exponents of x and y in @(aD)
is zero. We omit it.

Assume now that D] is simply connected for i=1, ..., r. We prove (a)-(d). Let 2
be the set of the boundary labels of all the possible derived regions in M with respect
to =, where M runs over all the simply connected #,-diagrams which have con-
nected interior. Then (a) and the first part of (b) are immediate. The second part of
(b) follows from Lemma 6 below.

Lemma 6. Let M be a simply connected R,-diagram with connected interior. Let
M, be a simply connected subdiagram of M with connected interior. Let b(M,) be the
number of regions in M, and let t=min{m*—n* n%. If all the pieces of M, are

standard, then b(M, 2% | B (OMy)]2.
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PRrROOF. Since every piece in M, is standard, all vertices have valency not more
than 4. Moreover, we may represent M, as the union of 3 kinds of basic plane figures
described below in such a way that every side of a plane figure is either horizontal or
vertical. The basic plane figures are as follows.

m m

Figure 3.

Clearly, all figures have area =r. If M, contains k basic figures, then
(D k = b(M,) = 3k.

Denote by S(M,) the area of M, as represented above. Since all basic figures have area
=! we get

) kt = S(M,).

Let T=T(M,) be the minimal rectangle which insribes M, such that the sides of T
contain an edge of M, represented as above. Then

3) S(T) = S(M,).
On the other hand, if /(7) is the length of the boundary of T then
4) |®(OM,)| = I(T).

Combining (2) and (3) we get
&) kt = S(T).

Since S(T)é% I(T)* we get from (4) and (5) that
1

(6) kt = ry |®(OM,)|*.

Finally, combining (6) with (1) yields

3
b(M,) = w7y |®(OMy)%,
as required.
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Also (c) follows from part (b) of Lemma 5 and (d) (i) fouows from part (a)
of Lemma 5 and the definition of *“ =~ ", d(ii) and d(iii) are now immediate by standard
arguments from small cancellation theory.

We still have to prove that D/, i=1, ..., r, are simply connected. Assume D’
is not simply connected and let D’ be a minimal derived region with this property.
Then D’ has a “hole” H which is filled in with derived regions which are already
simply connected. Consequently, conditions (a)-(d) of Lemma 4 are satisfied by H.
But then A has a boundary path e with ||®(e)|| =1, guaranteed by part (b) of Lemma
5, which by part (a) of the same lemma has an endpoint v with valency 2. Clearly v is
necessarily a separating vertex. Consequently H has a common standard piece with
D’ contradicting the definition of “~”. Thus D{, i=1, ..., r, are simply connected
and Lemma 4 together with Theorem 2 is proved. Theorem 2 and hence Theorem A
now follow by parts (b) and d(ii) of Lemma 4.

Finally, we prove Theorem B. We only have to show that the group in Theorem 2
is not abelian. This can be shown directly by mapping G on C,*C,* but it also fol-
lows from the above results, for it is immediate from Lemma 4(d) that either M’
contains one region in which case by Lemma 5, |®(dM)|=3n=6 or M’ contains
more than one region in which case |dM| =6, by Lemma 4(c) and (d)(iii). This
proves Theorem B.
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