Group rings of existentially closed locally finite p-groups

By FELIX LEINEN (Mainz)

Let K be any field. Assume that the group G is either existentially closed (e.c.)
in the class of all groups, or e.c. in the class of all locally finite groups.*) Then a result
of K. BoNvALLET, B. HARTLEY, D. S. PassmMaN and M. K. SMitH [1] asserts that the
group ring KG contains precisely one proper ideal, namely its augmentation ideal
w(KG). Obviously, a necessary ingredient for this result is the simplicity of G.

Now, consider the e.c. structures in the class L, of all locally finite p-groups.
Up to isomorphism, there exists a unique countable e.c. L§,-group E, [5, Satz 2].
This group cannot be simple, since minimal normal subgroups of L ,-groups are
cyclic of order p [2, 1.B.8]. However, E, is characteristically simple [5, Satz 7]. And
B. MAIER observed in [5, pp. 124—125] that the characteristical simplicity of E,
together with the main part of the proof of BONVALLET, HARTLEY, PASSMAN and SMITH
still yields the following result: If K is a field with Char K+#p, then o(KE)) is
the unique proper ideal in KE, which is invariant under the basis transformations of
KE, induced by the automorphisms of E,.

It is the goal of the present note, to extend this result to the modular group
rings of E,.

Theorem. Let K be any field, and let G be an e.c. L ,-group.

(a) For every proper ideal I of KG, there exists a nontrivial normal subgroup N in
G such that w(KN)-KGEL

(b) If G is countable, then w(KG) is the unique proper ideal in KG which is in-
variant under the basis transformations of KG induced by the automorphisms of G. In
particular, KG is either characteristically simple, or o(KG) is the unique proper cha-
racteristic ideal in KG.

Clearly, every ideal of w(KG) is also an ideal in KG. Hence, if w(KG) is the
unique proper characteristic ideal in KG, then @w(KG) is characteristically simple.

Note also, that uncountable e.c. L{§,-groups are in general not characteristically
simple by a result of S. THomAs [6, Theorem 1]. Therefore, it seems to be unlikely
that part (b) of the Theorem does also hold for e.c. L§,-groups of arbitrary car-
dinality.

In the proof of the Theorem, we will use wreath product constructions. Recall
that, for any two groups A and B, the unrestricted regular wreath product W= AWrB

* Cf. [3], [5] or [6] for the definition of "e.c.”.
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is the split extension W=Q>aB of its base group Q={f|f: B+~A}=A® (with
componentwise multiplication) by its top group B with regard to the action (b")f%=
=(b'b"Y)f for all fcQ and b, b’c¢ B. The support of a function f€Q is defined as

supp f = {bEB|(b) f # 1}.

We will always identify in the natural way B with the top group of W, and A with
the I-component {fcQlsuppfS{1}} of W. Note, that

suppa® € {b} for all ac 4, b¢eB.

Proof of the Theorem. Part (b) follows from (a), since every countable e.c. L§,-
group is characteristically simple [5, Satz 7], and since w(KG) has codimension
1 in KG.

For the proof of part (a), suppose we are given a finite elementary abelian
p-group A, and a finite subgroup X of G. Then AWrX=(A4, X) and G are contained
in the L§,-group AWrG. And since G is e.c. in L§,, we obtain an embedding

o: AWrX - G with otX = id.

(The group table of AWrX (with the elements from X as constants) can be duplicated
in G.) This shows, that we can follow the proof of the theorem of BONVALLET, HART-
LEY, PASSMAN and SMITH [1], in order to establish part (a) whenever Char K p,
as observed by B. MAIER.

Now, assume that Char K=p. Let 0zacl. Then there exist pairwise distinct
elements x,, ..., x,€G such that

a= Jkixi* with 0% k€K for O0=i=n.
i=o

Since 7 is an ideal in KG, we may assume without loss that x,=1 and k,=1. Choose
meEN such that pm=2"—1. Put X=(x,,...,x,) and
Y= (n)X...X(y,) where each (y;)is cyclic of order p™+2.
Arguing as above, we can find an embedding
o: YWrX - G with otX =id

Therefore, we may assume without loss that X=YWrX=G. Put

Zi=[nx] for 1s2i=n,
and observe that z; is an element of order p™*! in the base group @ of YWrX.

By inverse induction over s¢{n, n—1,...,0}, we will now find elements

o = Zs'a,‘;»xf‘EI
i=0
with
o, €KO and oa,0=(z,—1)(Zp-1—1)...(zZg41—1)
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To this end, we proceed as follows. Start with «,=x; then a, ;=k;€K and «,,=
=ko=1. Now suppose, that o, has been found for some s=1. Put

Og-1 = z,-az,—y,“-ac,-y,el.

Since K@ is commutative, we have

= 3ol xD -5
Obviously,
Og—1,i = %, i (zs—[¥s, X;)EKO and
Hg—1,0 = G50 (Z_,—- 1) g (Z,,— 1)(7- -1— 1)"'(23_' 1)'

Moreover, o,_, ;=0 by the definition of z,. Thus, the induction is completed, and
we obtain
ay = %,0° 1 = (Z,—1)(Za-1—1)...(zs — 1)EL

Because of supp z;={l, x;}, we have
(Bps oy B> = LN o WALRD)

where each (z;) is cyclic of order p™+1.
Put J={l, ..., n}. Define

ug = j{]g z;! for every S S J.

Then
ay = g’ es-us '€l where &5 = (—1)I\Sl.,
sSs

Note, that (ug) is cyclic of order p™*! whenever S#0. Let

U = (usl S S TY = (z1) X oo X (2o,
and define
V= g (vsy where each (vg) is cyclic of order p™+2.
=)

S#e

If W=VWrU, then every
prti-g o “p"‘”—l i
N L Rt SENTPEEY

is contained in the base group Q of W.
Let T be a complement to (ug) in U. Then

(w|1€Ts) = ‘EI]I (ws),

since supp w§ S (ug)- 1. Further, (w§|t€ Ts) S (vY), while V is the direct product of
the (vs), P=S<SJ. Hence,

Q = (W|1€T5, 0 % S SJ) = T IT (W%).
= s
S#e
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Define
L = (W81 (ws;P)2|4€Ty,, 1,6T5,,0 # S,, S: S J).

Now, p-(p™t'—1)=—pmodp™? and therefore
PnHrl_]
wh=1[ I o]
r=0

Thus, ug centralizes w§. And since U= {ug) X Ts, theset {(w§)|t€ Ts} is U-invariant
for every non-empty S <J. Hence, L is a normal subgroup of W. Note, that Q,/L
is the central product of the groups (w§), 1€Ts, 0#SCJ, with amalgamations
(WE:)" =(w§’)'s_

Let 8: W--W/L be the canonical epimorphism. Because of UNL=UNQ=1,
the restriction 6tU is an embedding. If

z: 1=U09‘:U19-€‘.-¢2 U19= Uo

is any chief series in U6, then the terms of X are exactly the intersections of U6 with
the terms of the normal series

1< Q/L< QUL <...< QU/JL=W|L

in W/L. Therefore, [3, Theorem 2.1] ensures the existence of an L§,-group H=G
and an embedding t: W/L-H such that the diagram

vi. ¢

el lw

WL~ H
commutes. Since G is e.c. in L§,, there does already exist an embedding
t: W/L- G with (0iWU = id.

Identifying U via 6 with U6, and suppressing £, we may assume without loss that
U=U0=W/|L=G. In the sequel, epimorphic images modulo L will be denoted by
bars.

Let zn: {0,...,2"—1}~{S|SSJ} be a bijection with On=0. By inverse in-
duction over s¢{2"—1,2"—-2, ...,0}, we will find now elements

Bs= D B,.i-liz*€l with
i=o

-1

B i€KQ and B, o=28 [ (Wj—1).

Jj=5+1

To this end, we proceed as follows. Start with fyn_y=0; then Py_; ;=¢,.€K and
Par—1,0=80. Now suppose, that f, has been found for some s=1. Put

pm-l-l_z -
A S | ] [vi‘,‘;-’]’“EQ.

and let
ﬁs*l = “T’“'ﬁ;_?;l‘ﬁ.‘?;EI-
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Since KQ is commutative, we have

ﬂs—l s ';’; ﬁs,i . (“Du e~ [?l! ﬁis]) ’ ﬁl-tl°

Thus,
ﬁa—l.i - ﬁa.i '(wn_[?u ﬁfn])EKn'
Further,
PM-I-I_: - qu-l_g it
ol = T[] I [0+ =
p"""‘—z " m4+1_1 =
=" I [ I [s) =
r=0 r=1
pmti—z

= JT [v(“:*)]—l- [v"f:”_n]ﬂ”‘*'-l =w
r=0 - L i

Therefore, f,_,,,=0. Moreover, uy,=u,=1, and thus
an—1
ﬁl—l.o - ﬂs.o'(ws:_ l) = &g ‘j_{] (ﬁh_ 1)
This completes the induction, and we obtain
0 =& Po=2Poo= SICI (Wws—1)el.
Lo

From the definition of L, we have w§ =w§, for any two nonempty subsets

S, S, of J. Thus, there exists h€eG with h=wg{ for 0S8 <J. Because of Char K

=p, it follows that
6 = JT (We—1) = (h—1)"-1€l.
SCJ

S#o
Since p™=2"—1, successive multiplication with (h— 1) eventually yields
(h—1y" = (hv" =)€L

But h is an element of order p™*' in Q)/L=G. Therefore, N={gcGl|(g—1)el}
is a non-trivial normal subgroup of G with w(KN)-KGEI. [O

Finally note, that the normal subgroups of every e.c. L§,-group are totally
ordered by inclusion [3, Theorem 2.3], and that the embeddings of finite p-groups into
e.c. L§,-groups are quite well understood (see [3, § 3]). In particular, in the proof of
part (a) of the Theorem, if f€G is any fixed element with {(f)(X=1, then a com-
bination of [3, Theorem 3.1] and [4, Theorem 3.3] yields that the embeddings ¢ and £
can be so chosen that, in addition,

SNIme =1 and (fNIm?z = 1.

But then, fe{(f%)=(h%)=N={geG|(g—1)el}. This shows, that the following
stronger version of part (a) of the Theorem holds.

g
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Proposition. Let K be any field, and let G be an e.c. LF,-group. Assume that I
is a proper ideal of KG, and that

Oxa= Skxcl with 0xkeK

i=0

and pairwise distinct elements 1=xy, Xy, ..., X,£G. If X={(xy, ..., x,), and if M|N
is the (unique) chief factor in G with 1=NNXZMNX, then N=N={geG|(g—1)¢
€N}=G and w(KN)-KGCI.

However, in the above situation, it remains open whether for every proper ideal
I of KG there exists N2G such that

INw(KG) = o(KN)- KG,
ie., whether the w(KN)-KG, N=G, are the only ideals of w(KG).
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