Group rings of existentially closed locally finite p-groups

By FELIX LEINEN (Mainz)

Let K be any field. Assume that the group G is either existentially closed (e.c.) in the class of all groups, or e.c. in the class of all locally finite groups.*) Then a result of K. Bonvallet, G. Arrive, G. S. Passman and G. Smith [1] asserts that the group ring G contains precisely one proper ideal, namely its augmentation ideal G. Obviously, a necessary ingredient for this result is the simplicity of G.

Now, consider the e.c. structures in the class $L\mathfrak{F}_p$ of all locally finite p-groups. Up to isomorphism, there exists a unique countable e.c. $L\mathfrak{F}_p$ -group E_p [5, Satz 2]. This group cannot be simple, since minimal normal subgroups of $L\mathfrak{F}_p$ -groups are cyclic of order p [2, 1.B.8]. However, E_p is characteristically simple [5, Satz 7]. And B. Maier observed in [5, pp. 124—125] that the characteristical simplicity of E_p together with the main part of the proof of Bonvallet, Hartley, Passman and Smith still yields the following result: If K is a field with $Char K \neq p$, then $\omega(KE_p)$ is the unique proper ideal in KE_p which is invariant under the basis transformations of KE_p induced by the automorphisms of E_p .

It is the goal of the present note, to extend this result to the modular group

rings of E_p .

Theorem. Let K be any field, and let G be an e.c. $L\mathfrak{F}_p$ -group.

(a) For every proper ideal I of KG, there exists a nontrivial normal subgroup N in G such that $\omega(KN) \cdot KG \subseteq I$.

(b) If G is countable, then $\omega(KG)$ is the unique proper ideal in KG which is invariant under the basis transformations of KG induced by the automorphisms of G. In particular, KG is either characteristically simple, or $\omega(KG)$ is the unique proper characteristic ideal in KG.

Clearly, every ideal of $\omega(KG)$ is also an ideal in KG. Hence, if $\omega(KG)$ is the unique proper characteristic ideal in KG, then $\omega(KG)$ is characteristically simple.

Note also, that uncountable e.c. $L_{\mathfrak{F}_p}$ -groups are in general not characteristically simple by a result of S. Thomas [6, Theorem 1]. Therefore, it seems to be unlikely that part (b) of the Theorem does also hold for e.c. $L_{\mathfrak{F}_p}$ -groups of arbitrary cardinality.

In the proof of the Theorem, we will use wreath product constructions. Recall that, for any two groups A and B, the unrestricted regular wreath product W = AWrB

^{*} Cf. [3], [5] or [6] for the definition of "e.c.".

290 F. Leinen

is the split extension $W = \Omega > A$ of its base group $\Omega = \{f | f: B \to A\} = A^B$ (with componentwise multiplication) by its top group B with regard to the action $(b')f^b = (b'b^{-1})f$ for all $f \in \Omega$ and $b, b' \in B$. The support of a function $f \in \Omega$ is defined as

supp
$$f = \{b \in B | (b) f \neq 1\}.$$

We will always identify in the natural way B with the top group of W, and A with the 1-component $\{f \in \Omega | \text{supp } f \subseteq \{1\}\}$ of W. Note, that

supp
$$a^b \subseteq \{b\}$$
 for all $a \in A$, $b \in B$.

Proof of the Theorem. Part (b) follows from (a), since every countable e.c. $L\mathfrak{F}_p$ -group is characteristically simple [5, Satz 7], and since $\omega(KG)$ has codimension 1 in KG.

For the proof of part (a), suppose we are given a finite elementary abelian p-group A, and a finite subgroup X of G. Then $AWrX = \langle A, X \rangle$ and G are contained in the $L\mathfrak{F}_p$ -group AWrG. And since G is e.c. in $L\mathfrak{F}_p$, we obtain an embedding

$$\sigma: AWrX \to G$$
 with $\sigma \mid X = id$.

(The group table of AWrX (with the elements from X as constants) can be duplicated in G.) This shows, that we can follow the proof of the theorem of Bonvallet, Hartley, Passman and Smith [1], in order to establish part (a) whenever $Char K \neq p$, as observed by B. Maier.

Now, assume that Char K=p. Let $0 \neq \alpha \in I$. Then there exist pairwise distinct elements $x_0, ..., x_n \in G$ such that

$$\alpha = \sum_{i=0}^{n} k_i x_i^{-1}$$
 with $0 \neq k_i \in K$ for $0 \leq i \leq n$.

Since I is an ideal in KG, we may assume without loss that $x_0=1$ and $k_0=1$. Choose $m \in \mathbb{N}$ such that $p^m \ge 2^n - 1$. Put $X = \langle x_1, ..., x_n \rangle$ and

$$Y = \langle y_1 \rangle X ... X \langle y_n \rangle$$
 where each $\langle y_i \rangle$ is cyclic of order p^{m+1} .

Arguing as above, we can find an embedding

$$\sigma: YWrX \to G$$
 with $\sigma \mid X = id$

Therefore, we may assume without loss that $X \leq YWrX \leq G$. Put

$$z_i = [y_i, x_i]$$
 for $1 \le i \le n$,

and observe that z_i is an element of order p^{m+1} in the base group Θ of YWrX. By inverse induction over $s \in \{n, n-1, ..., 0\}$, we will now find elements

$$\alpha_s = \sum_{i=0}^s \alpha_{s,i} \cdot x_i^{-1} \in I$$

with

$$\alpha_{s,i} \in K\Theta$$
 and $\alpha_{s,0} = (z_n - 1)(z_{n-1} - 1)...(z_{s+1} - 1).$

To this end, we proceed as follows. Start with $\alpha_n = \alpha$; then $\alpha_{n,i} = k_i \in K$ and $\alpha_{n,0} = k_0 = 1$. Now suppose, that α_s has been found for some $s \ge 1$. Put

$$\alpha_{s-1} = z_s \cdot \alpha_s - y_s^{-1} \cdot \alpha_s \cdot y_s \in I.$$

Since $K\Theta$ is commutative, we have

$$\alpha_{s-1} = \sum_{i=0}^{s} \alpha_{s,i} \cdot (z_s - [y_s, x_i]) \cdot x_i^{-1}.$$

Obviously,

$$\alpha_{s-1,i} = \alpha_{s,i} \cdot (z_s - [y_s, x_i]) \in K\Theta$$
 and

$$\alpha_{s-1,0} = \alpha_{s,0} \cdot (z_s-1) = (z_n-1)(z_{n-1}-1)...(z_s-1).$$

Moreover, $\alpha_{s-1,s}=0$ by the definition of z_s . Thus, the induction is completed, and we obtain

$$\alpha_0 = \alpha_{0,0} \cdot 1 = (z_n - 1)(z_{n-1} - 1)...(z_1 - 1) \in I.$$

Because of supp $z_i = \{1, x_i\}$, we have

$$\langle z_1, ..., z_n \rangle = \langle z_1 \rangle \times ... \times \langle z_n \rangle$$

where each $\langle z_i \rangle$ is cyclic of order p^{m+1} .

Put $J = \{1, ..., n\}$. Define

$$u_S = \prod_{j \in S} z_j^{-1}$$
 for every $S \subseteq J$.

Then

$$\alpha_0 = \sum_{S \subseteq I} \varepsilon_S \cdot u_S^{-1} \in I \quad \text{where} \quad \varepsilon_S = (-1)^{|J \setminus S|}.$$

Note, that $\langle u_S \rangle$ is cyclic of order p^{m+1} whenever $S \neq \emptyset$. Let

$$U = \langle u_S | S \subseteq J \rangle = \langle z_1 \rangle \times ... \times \langle z_n \rangle$$

and define

$$V = \prod_{\substack{S \subseteq J \\ S \neq \emptyset}} \langle v_S \rangle$$
 where each $\langle v_S \rangle$ is cyclic of order p^{m+2} .

If W = VWrU, then every

$$w_{S} = \begin{bmatrix} \prod_{r=0}^{p^{m+1}-2} v_{S}^{(u_{S}^{r})} \end{bmatrix}^{-1} \cdot \begin{bmatrix} v_{S}^{(u_{S}^{p^{m+1}-1})} \end{bmatrix}^{p^{m+1}-1}, \quad \emptyset \neq S \subseteq J,$$

is contained in the base group Ω of W.

Let T_S be a complement to $\langle u_S \rangle$ in U. Then

$$\langle w_S^t | t \in T_S \rangle = \prod_{t \in T_S} \langle w_S^t \rangle,$$

since supp $w_S^t \subseteq \langle u_S \rangle \cdot t$. Further, $\langle w_S^t | t \in T_S \rangle \subseteq \langle v_S^U \rangle$, while V is the direct product of the $\langle v_S \rangle$, $\emptyset \neq S \subseteq J$. Hence,

$$\Omega_0 = \langle w_S^t | t \in T_S, \emptyset \neq S \subseteq J \rangle = \prod_{\substack{S \subseteq J \\ S \neq a}} \prod_{t \in T_S} \langle w_S^t \rangle.$$

Define

$$L = \langle (w_{S_1}^p)^{t_1} \cdot (w_{S_2}^{-p})^{t_2} | t_1 \in T_{S_1}, t_2 \in T_{S_2}, \emptyset \neq S_1, S_2 \subseteq J \rangle.$$

Now, $p \cdot (p^{m+1}-1) \equiv -p \mod p^{m+2}$, and therefore

$$w_S^p = \begin{bmatrix} \prod_{r=0}^{p^{m+1}-1} v_S^{(u_S^r)} \end{bmatrix}^{-p}.$$

Thus, u_S centralizes w_S^p . And since $U = \langle u_S \rangle \times T_S$, the set $\{(w_S^p)^t | t \in T_S\}$ is *U*-invariant for every non-empty $S \subseteq J$. Hence, *L* is a normal subgroup of *W*. Note, that Ω_0/L is the central product of the groups $\langle w_S^t \rangle$, $t \in T_S$, $\emptyset \neq S \subseteq J$, with amalgamations $(w_{S_3}^p)^{t_1} = (w_{S_3}^p)^{t_2}$.

Let $\theta: W \to W/L$ be the canonical epimorphism. Because of $U \cap L \leq U \cap \Omega = 1$,

the restriction $\theta \mid U$ is an embedding. If

$$\Sigma$$
: $1 = U_0 \theta < U_1 \theta < ... < U_l \theta = U \theta$

is any chief series in $U\theta$, then the terms of Σ are exactly the intersections of $U\theta$ with the terms of the normal series

$$1 < \Omega/L < \Omega U_1/L < ... < \Omega U_1/L = W/L$$

in W/L. Therefore, [3, Theorem 2.1] ensures the existence of an $L\mathfrak{F}_p$ -group $H \ge G$ and an embedding $\tau \colon W/L \to H$ such that the diagram

$$U \xrightarrow{id} G$$

$$\theta \downarrow \qquad \downarrow id$$

$$W/L \xrightarrow{\tau} H$$

commutes. Since G is e.c. in $L\mathfrak{F}_p$, there does already exist an embedding

$$\hat{\tau}$$
: $W/L \to G$ with $(\theta \hat{\tau}) \wr U = id$.

Identifying U via θ with $U\theta$, and suppressing $\hat{\tau}$, we may assume without loss that $U=U\theta \leq W/L \leq G$. In the sequel, epimorphic images modulo L will be denoted by bars.

Let $\pi: \{0, ..., 2^n-1\} \rightarrow \{S | S \subseteq J\}$ be a bijection with $0\pi = \emptyset$. By inverse induction over $s \in \{2^n-1, 2^n-2, ..., 0\}$, we will find now elements

$$eta_s = \sum_{i=0}^s eta_{s,\,i} \cdot ar{u}_{i\pi}^{-1} \in I \quad \text{with}$$

$$eta_{s,\,i} \in K \overline{\Omega} \quad \text{and} \quad eta_{s,\,0} = \varepsilon_{\mathfrak{o}} \cdot \prod_{j=s+1}^{2^n-1} (\bar{w}_{j\pi} - 1).$$

To this end, we proceed as follows. Start with $\beta_{2^{n}-1}=\alpha_{0}$; then $\beta_{2^{n}-1,i}=\varepsilon_{i\pi}\in K$ and $\beta_{2^{n}-1,0}=\varepsilon_{\sigma}$. Now suppose, that β_{s} has been found for some $s\geq 1$. Put

$$\gamma_s = \prod_{r=0}^{p^{m+1}-2} \left[v_{s\pi}^{(u_{s\pi}^r)} \right]^{r+1} \in \Omega,$$

and let

$$\beta_{s-1} = \bar{w}_{s\pi} \cdot \beta_s - \bar{\gamma}_s^{-1} \cdot \beta_s \cdot \bar{\gamma}_s \in I.$$

Since $K\overline{\Omega}$ is commutative, we have

$$\beta_{s-1} = \sum_{i=0}^{s} \beta_{s,i} \cdot (\bar{w}_{s\pi} - [\bar{\gamma}_s, \bar{u}_{i\pi}]) \cdot \bar{u}_{i\pi}^{-1}.$$

Thus,

$$\beta_{s-1,i} = \beta_{s,i} \cdot (\bar{w}_{s\pi} - [\bar{\gamma}_s, \bar{u}_{i\pi}]) \in K\overline{\Omega}.$$

Further,

$$\begin{split} [\gamma_{s}, u_{s\pi}] &= \prod_{r=0}^{p^{m+1}-2} \left[v_{s\pi}^{(u_{s\pi}^{r})} \right]^{-r-1} \cdot \prod_{r=0}^{p^{m+1}-2} \left[v_{s\pi}^{(u_{s\pi}^{r+1})} \right]^{r+1} = \\ &= \prod_{r=0}^{p^{m+1}-2} \left[v_{s\pi}^{(u_{s\pi}^{r})} \right]^{-r-1} \cdot \prod_{r=1}^{p^{m+1}-1} \left[v_{s\pi}^{(u_{s\pi}^{r})} \right]^{r} = \\ &= \prod_{r=0}^{p^{m+1}-2} \left[v_{s\pi}^{(u_{s\pi}^{r})} \right]^{-1} \cdot \left[v_{s\pi}^{(u_{s\pi}^{r})-1} \right]^{p^{m+1}-1} = w_{s\pi}. \end{split}$$

Therefore, $\beta_{s-1,s}=0$. Moreover, $u_{0\pi}=u_{\theta}=1$, and thus

$$\beta_{s-1,0} = \beta_{s,0} \cdot (\bar{w}_{s\pi} - 1) = \varepsilon_{o} \cdot \prod_{j=s}^{2^{n}-1} (\bar{w}_{j\pi} - 1).$$

This completes the induction, and we obtain

$$\delta = \varepsilon_{\mathbf{o}} \cdot \beta_0 = \varepsilon_{\mathbf{o}} \cdot \beta_{0,0} = \prod_{\substack{S \subseteq J \\ S \neq \mathbf{o}}} (\bar{w}_S - 1) \in I.$$

From the definition of L, we have $\overline{w}_{S_1}^p = \overline{w}_{S_2}^p$ for any two nonempty subsets S_1 , S_2 of J. Thus, there exists $h \in G$ with $h = \overline{w}_S^p$ for $\emptyset \neq S \subseteq J$. Because of Char K = p, it follows that

$$\delta^p = \prod_{\substack{S \subseteq J \\ S \neq \emptyset}} (\bar{w}_S^p - 1) = (h-1)^{2^n-1} \in I.$$

Since $p^m \ge 2^n - 1$, successive multiplication with (h-1) eventually yields

$$(h-1)^{p^m} = (h^{p^m}-1) \in I.$$

But h is an element of order p^{m+1} in $\Omega_0/L \le G$. Therefore, $N = \{g \in G | (g-1) \in I\}$ is a non-trivial normal subgroup of G with $\omega(KN) \cdot KG \subseteq I$.

Finally note, that the normal subgroups of every e.c. $L\mathfrak{F}_p$ -group are totally ordered by inclusion [3, Theorem 2.3], and that the embeddings of finite p-groups into e.c. $L\mathfrak{F}_p$ -groups are quite well understood (see [3, § 3]). In particular, in the proof of part (a) of the Theorem, if $f \in G$ is any fixed element with $\langle f^G \rangle \cap X = 1$, then a combination of [3, Theorem 3.1] and [4, Theorem 3.3] yields that the embeddings σ and $\hat{\tau}$ can be so chosen that, in addition,

$$\langle f^G \rangle \cap \operatorname{Im} \sigma = 1$$
 and $\langle f^G \rangle \cap \operatorname{Im} \hat{\tau} = 1$.

But then, $f \in \langle f^G \rangle \leq \langle h^G \rangle \leq N = \{g \in G | (g-1) \in I\}$. This shows, that the following stronger version of part (a) of the Theorem holds.

Proposition. Let K be any field, and let G be an e.c. $L\mathfrak{F}_p$ -group. Assume that I is a proper ideal of KG, and that

$$0 \neq \alpha = \sum_{i=0}^{n} k_i x_i \in I$$
 with $0 \neq k_i \in K$

and pairwise distinct elements $1=x_0, x_1, ..., x_n \in G$. If $X=\langle x_1, ..., x_n \rangle$, and if \tilde{M}/\tilde{N} is the (unique) chief factor in G with $1 = \tilde{N} \cap X \nleq \tilde{M} \cap X$, then $\tilde{N} \leq N = \{g \in G | (g-1) \in S\}$ $\in I\} \cong G$ and $\omega(K\widetilde{N}) \cdot KG \subseteq I$.

However, in the above situation, it remains open whether for every proper ideal I of KG there exists $N \not\supseteq G$ such that

$$I \cap \omega(KG) = \omega(KN) \cdot KG$$

i.e., whether the $\omega(KN) \cdot KG$, $N \subseteq G$, are the only ideals of $\omega(KG)$.

References

- [1] K. BONVALLET, B. HARTLEY, D. S. PASSMAN & M. K. SMITH, Group rings with simple augmentation ideals, *Proc. Amer. Math. Soc.* **56** (1976), 79—82.
 [2] O. H. KEGEL & B. A. F. WEHRFRITZ, Locally finite groups, *North-Holland*, *Amsterdam* 1973.
- [3] F. Leinen, Existentially closed groups in locally finite group classes, Comm. Algebra 13 (1985), 1991-2024.
- [4] F. Leinen, Existentially closed locally finite p-groups, J. Algebra 103 (1986), 160—183.
- [5] B. Maier, Existenziell abgeschlossene lokal endliche p-Gruppen, Arch. Math. 37 (1981), 113—
- [6] S. Thomas, Complete existentially closed locally finite groups, Arch. Math. 44 (1985), 97-109.

FELIX LEINEN FACHBEREICH 17 — MATHEMATIK JOHANNES-GUTENBERG-UNIVERSITÄT SAARSTR. 21 6500 MAINZ WEST GERMANY

(Received April 29, 1986)