On two Diophantine equations concerning Lucas sequences

By I. JOÓ and B. M. PHONG (Budapest)

1. Introduction

A linear recurrence $G = \{G_n\}_{n=1}^{\infty}$ of order k(>1) is defined by rational integers $A_1, A_2, ..., A_k$ and by recursion

(1)
$$G_n = A_1 G_{n-1} + A_2 G_{n-2} + \dots + A_k G_{n-k} \quad (n \ge k),$$

where the initial values $G_0, G_1, ..., G_{k-1}$ are fixed not all zero rational integers and $A_k \neq 0$. Denote the distinct roots of the characteristic polynomial

(2)
$$f(x) = x^{k} - A_{1}x^{k-1} - \dots - A_{k}$$

by $\alpha_1, \alpha_2, ..., \alpha_t$, where α_i has multiplicity m_i . It is well known (see page 62 of [6]) that for $n \ge 0$

$$G_n = f_1(n)\alpha_1^n + f_2(n)\alpha_2^n + \dots + f_t(n)\alpha_t^n,$$

where $f_i(n)$ is a polynomial of degree at most m_i-1 , furthermore the coefficients of $f_i(n)$ are algebraic numbers from the field $Q(\alpha_1, ..., \alpha_t)$. We shall say that the sequence G is non-degenerate if t>1 and $\alpha_i|\alpha_j$ is not a root of unity for $1 \le i < j \le t$. In case k=2 the sequence G is called a second order recurrence, furthermore we say that G is Lucas sequence if k=2, $G_0=0$ and $G_1=1$.

Let $p_1, p_2, ..., p_r$ be rational primes and denote S the set of rational integers which have only these primes as prime factors.

In [3] K. GYŐRY, P. KISS and A. SHINZEL showed that if G is a non-degenerate Lucas sequence, then

$$G_x \in S$$

holds only for finitely many sequences G and for finitely many integers x. K. GYŐRY [2] improved this result giving explicit upper bound for x and for the constants of the sequences which satisfy (3).

The Diophantine equation

$$G_x = wy^q$$

was also studied by several authors. T. N. Shorey and C. L. Stewart [11] proved that if y>1, q>1 and G is a non-degenerate recurrence of order k for which $m_1=1$ and $|\alpha_1|>|\alpha_j|$ (j=2,...,t), then (4) implies the inequality q< c, where c is an effectively computable constant in terms of w and the parameters of the sequence G. They showed that x and y are also bounded for second order recurrences. A PETHŐ [9] proved similar results for second order recurrences supposing $(A_1, A_2)=1$ and

 $w \in S$. For recent general results we refer to the papers by P. Kiss [4], I. Nemes and A. Pethő [7], T. N. Shorey and C. L. Stewart [12] further to the references there.

The following problem remained open: if $|\alpha_1| = |\alpha_2| = ... = |\alpha_t|$, then the equation (4) has finite or infinite solutions? The aim of the present paper is to investigate this question.

Let G be a non-degenerate second order recurrence and t be an integer. Denote m(t) the number of solutions x of the Diophantine equation $G_x=t$. K. K. Kubota [5] proved that $m(t) \le 4$. F. Beukers [1] improved this result by showing $m(t) + m(-t) \le 3$ with finitely many exceptions. He also proved that if G is non-degenerate Lucas sequence, then $m(t)+m(-t) \le 2$ with at most three exceptions. J. C. Parnami and T. N. Shorey [8] showed that there exists an effectively computable number N>0 depending only on the sequence G such that the equation

$$G_x = G_y$$

has no solutions in non-negative integers x, y with $\max(x, y) > N$ and $x \neq y$. Thus $m(t) \leq 1$ for all larger t.

In below everywhere we denote Lucas sequences by R=R(A,B), that is $R_n=AR_{n-1}-BR_{n-2} \quad (n>1)$

where $R_0=0$, $R_1=1$ and A,B are non-zero integers with $D=A^2-4B\neq 0$. It is well known that

(6)
$$R_n = \frac{\alpha^n - \beta^n}{\alpha - \beta},$$

where α , β are distinct roots of $x^2 - Ax + B = 0$. For fixed integer $k \ge 1$ we put

$$U_0(k) := k, \quad U_n(k) := \frac{R_{kn}}{R_{-}} \quad (n \ge 1).$$

As is known, $U_n(k)$ -s are integers. Denote $U(k) = \{U_n(k)\}_{n=0}^{\infty}$. L. Somer [13] proved that the sequence U(k) is a linear integral recurrence of order k, furthermore the order k is minimal. Indeed, using (6) we get

$$U_n(k) = (\alpha^{k-1})^n + (\alpha^{k-2}\beta)^n + \dots + (\alpha\beta^{k-2})^n + (\beta^{k-1})^n = \alpha_1^n + \dots + \alpha_k^n,$$

where $\alpha_i = \alpha^{k-i} \cdot \beta^{i-1}$. If D < 0, then $|\alpha_1| = \dots = |\alpha_k| = |\alpha|^{k-1}$. Consequently, the investigation of the Diophantine equation

$$U_{\star}(k) = w v^q$$

has meaning. We shall prove the following two theorems.

Theorem 1. Let R be a non-degenerate Lucas sequence with (A, B)=1 and $k \ge 1$ be a fixed integer. Then the Diophantine equation $U_x(k)=wy^q$ in integers $w \in S$, $q \ge 3$, x, |y| > 1 implies:

$$\max(|w|,|y|,x,q) < C,$$

where C is an effectively computable constant depending only on A, B, k and S.

Theorem 2. Let R be a non-aegenerate Lucas sequence. Then the equation $|R_x| = |R_y|$ has no solutions in non-negative integers x, y with $x \neq y$ and min $(x, y) > e^{398}$.

2. Auxiliary results and lemmas

We base the proof of the theorems on the following results, which were all proved by Baker's method.

Theorem A. Let $F(z, t) \in Q[z, t]$ be a binary form with $F(1, 0) \neq 0$ such that among the linear factors in the linearisation of F at least two are distinct. Let d be a positive integer. Then the equation

$$F(z, t) = wy^q$$

in integers $w \in S$, $t \in S$, $q \ge 3$, y, z with (z, t) = d, |y| > 1 implies that

$$\max(|w|, |t|, |y|, |z|, q) < C$$

where C is an effectively computable constant depending only on F, d and S.

This theorem is due to T. N. SHOREY, A. VAN DER POORTEN R. TIJDEMAN and A. Schinzel [10].

Theorem B. Let α be an algebraic number of height at most $H(\geq 4)$ and degree d. Let b_1 and b_2 be integers with absolute values at most $M(\ge 4)$. If

$$\Lambda = b_1 \log (-1) + b_2 \log \alpha \neq 0$$

then

$$|\Lambda| > \exp(-c \log H \log M)$$

for $c = 2^{435} \cdot (3d)^{49}$.

This was proved by C. L. STEWART [14].

Lemma 1. Let R=R(A,B) be a non-degenerate Lucas sequence with condition $D=A^2-4B<0$. Then $B\geq 2$ and

$$|R_n| > B^{n/4}$$
 for $n > e^{398}$.

PROOF. Since R(A, B) is non-degenerate Lucas sequence, we have $A^2 \neq B$, 2B, 3B, 4B. Thus if $D = A^2 - 4B < 0$, then $B \ge 2$.

Let α and β be roots of $x^2 - Ax + B = 0$. By our condition we obtain

(7)
$$|\alpha| = |\beta| = \sqrt{B}$$
.

By (6) we have

(8)
$$|R_n| = \left| \frac{\alpha^n - \beta^n}{\sqrt{|D|}} \right| = \frac{|\alpha|^n}{\sqrt{|D|}} \left| 1 - \left(\frac{\beta}{\alpha} \right)^n \right| \ge \frac{|\alpha|^n}{2\sqrt{|D|}} \left| t \log(-1) - n \log \frac{\beta}{\alpha} \right|,$$

where log denotes the principal value of the logarithm function and $|t| \le 2n$, because is the length of a chord of unit circle which is greater than the half of the smaller circular art. Set

$$\Lambda = t \log (-1) - n \log \frac{\beta}{\alpha}.$$

Since β/α is not a root of unity, we have $\Lambda \neq 0$. Now apply the Theorem B to Λ . It is easily seen that in our case H=2B, M=2n and d=2. Thus for $n \ge 2$ we get

(9)
$$|\Lambda| > \exp\left\{-2^{484} \cdot 3^{49} \log 2B \cdot \log 2n\right\}$$

$$\ge \exp\left\{-2^{485} \cdot 3^{49} \log B \cdot \log 2n\right\} = B^{-2^{485} \cdot 3^{49} \cdot \log 2n}$$

On the other hand it follows from $0 < A^2 < 4B$ that

$$|D| \le |A^2 - 2B| + |2B| \le 2B + 2B = 4B$$

and so

(10)
$$\frac{1}{2\sqrt{|D|}} > \frac{1}{4\sqrt{B}} \ge B^{-5/2},$$

Thus by (7), (8), (9) and (10) we obtain

$$|R_n| > B^{(n/2-2^{485}\cdot 3^{49}\log 2n-5/2)}$$

and so $|R_n| > B^{n/4}$ if $n > e^{398}$.

Lemma 2. Let $T = \{T_m(x, y)\}_{m=0}^{\infty}$ be a second order recurrence sequence defined by the initial terms $T_0=1$, $T_1=x+y$ and by the recursion

$$T_m = xT_{m-1} - y^2T_{m-2}$$

Then for any integer $m \ge 2$ $T_m = xT_{m-1} - y^2T_{m-2}$.

$$T_m(x, y) = x^m + x^{m-1}y - (m-1)x^{m-2}y^2 - \dots$$

is a binary form such that among the linear factors in the factorisation of $T_m(x,y)$ at least two are distinct.

PROOF. Let $R=R(x, y^2)$ be Lucas sequence defined by parameters A=x and $B=y^2$. It is well known that

$$(11) T_m = T_1 R_m - y^2 T_0 R_{m-1}$$

for any $m \ge 1$. On the other hand we have

(12)
$$R_m(A,B) = \sum_{i=0}^{\lfloor (m-1)/2 \rfloor} {m-1-i \choose i} A^{m-1-2i} \cdot (-B)^i$$

and so by (11) and (12) we get

(13)
$$T_{m} = (x+y)R_{m} - y^{2}R_{m-1} = (xR_{m} - y^{2}R_{m-1}) + yR_{m} = R_{m+1} + yR_{m} =$$

$$= \sum_{i=0}^{\lfloor m/2 \rfloor} {m-i \choose i} x^{m-2i} (-y^{2})^{i} + y \sum_{j=0}^{\lfloor (m-1)/2 \rfloor} {m-1-j \choose j} x^{m-1-2j} (-y^{2})^{j} =$$

$$= \sum_{i=0}^{\lfloor m/2 \rfloor} (-1)^{i} {m-i \choose i} x^{m-2i} y^{2i} + \sum_{j=0}^{\lfloor (m-1)/2 \rfloor} (-1)^{j} {m-1-j \choose j} x^{m-(2j+1)} y^{2j+1} =$$

$$= x^{m} + x^{m-1} y - (m-1) x^{m-2} y^{2} - \dots,$$

from which it follows that $T_m(x, y)$ is a binary form. Suppose that $T_m(x, 1) = (x - \alpha)^m$.

Then by (13)

$$-m\alpha = 1$$
 and $\frac{m(m-1)}{2}\alpha^2 = -(m-1)$

follow. From these $\alpha=2$ and m=-1/2 follow, which is a contradiction since m is an integer. \square

Lemma 3. Let $H=H(A,B)=\{H_n\}_{n=0}^{\infty}$ be a second order recurrence sequence defined by the initial terms $H_0=2$, $H_1=A$ and by the recursion

$$H_n = AH_{n-1} - BH_{n-2} \quad (n > 1).$$

If (A, B)=1, then $(H_n, B)=1$ for any n>0.

PROOF. By the recursion we have

$$(H_n, B) = (H_{n-1}, B) = \dots = (H_1, B) = (A, B) = 1.$$

3. Proofs of theorems

PROOF OF THEOREM 1.

In the following $c_1, c_2, ...$ will denote effectively computable constants depending only on A, B, k and S.

Suppose that the integers $w \in S$, $q \ge 3$, x, |y| > 1 are solutions of

$$U_x(k) = \frac{R_{kx}}{R_x} = wy^q.$$

Let S_1 be the set of non-zero integers which are composed of prime divisors of B. Put $S_0 = S \cup S_1$.

First suppose that k=2m+1 ($m \ge 0$ is integer). If m=1 then, using the explicit form

$$(14) H_n = \alpha^n + \beta^n$$

for the terms of the sequence H defined in Lemma 3, we get

(15)
$$wy^{q} = U_{x}(k) = U_{x}(3) = (\alpha^{x} + \beta^{x})^{2} - B^{x} = H_{x}^{2} - B^{x} = \begin{cases} F_{1}(z, t) = z^{2} - t^{2} & \text{if } x \text{ even} \\ F_{2}(z, t) = z^{2} - Bt^{2} & \text{if } x \text{ odd,} \end{cases}$$

with $n = \left[\frac{x}{2}\right]$, $t = B^n$, $z = H_x$. One sees that $F_i(1, 0) = 1$ for i = 1, 2 and in the

factorization of F_1 and F_2 the two linear factors are distinct. We note that (z, t)=1 by Lemma 3.

It follows from Theorem A, that there exists an effectively computable constant c_1 depending only on F_1 , F_2 and S_0 such that for any integer solution $t \in S_0$, $w \in S_0$, |y| > 1, $q \ge 3$, z of (15)

$$\max(|w|, |t|, |y|, |z|, q) < c_1$$

is satisfied. But F_1 , F_2 , S_0 therefore c_1 also depend only on A, B and S. Thus

$$|z| = |H_x| < c_1$$

from which $x < c_2$ follows. Thus in this case the Theorem is proved with $c = \max(c_1, c_2).$

Now we suppose that $m \ge 2$. Let $z = H_{2x}$, $t = B^x$ and

$$T_v = U_x(2v+1) = \frac{R_{(2v+1)x}}{R_x}$$
 $(v = 0, 1, 2, ...)$

Using (6), (14) and the fact $B = \alpha \beta$, for v > 1 we have

$$T_v = H_{2x}T_{v-1} - B^{2x}T_{v-2} = zT_{v-1} - t^2T_{v-2}$$

and $T_0=1$, $T_1=U_x(3)=H_{2x}+B^x=z+t$. Thus

$$T_m = U_x(2m+1) = U_x(k) = wy^q$$

from which using Lemma 2 and Theorem A we get

$$\max(|w|, |t|, |y|, |z|, q) < c_3$$

where c_3 depend only on A, B, $T_m(z,t)$ and S_0 . But $T_m(z,t)$ and S_0 depend only on k, B and S.

Because $|z| = |H_{2x}| < c_3$, hence $x < c_4$ and

$$\max(|w|, |y|, x, q) < \max(c_3, c_4).$$

Now let k=2m. If m=1, then according to

$$U_x(k) = U_x(2) = H_x = wy^q$$

we have

$$\max(|w|, |y|, x, q) < c_5$$

because $\{H_n\}_{n=0}^{\infty}$ is a second order recurrence sequence.

Let $m \ge 2$. Then

$$U_x(k) = U_x(2m) = \frac{R_{2mx}}{R_x} = H_{mx} \frac{R_{mx}}{R_x} = wy^q.$$

It is known that $(H_v, R_v) = 1$ or 2, hence $H_{mx} = w_1 y_1^q$, where $w_1 \in S_0$, x, y_1 are integers. Hence forth

$$\max(|w_1|, |y_1|, mx, q) < c_6$$

follows and so $|wy^q| < c_7$, consequently

$$\max(|w|, |y|, x, q) < c_8$$
.

PROOF OF THEOREM 2.

Denote r=r(m) the smallest natural number for which $m|R_r$.

First we prove that $r(R_n)=n$ if $n>e^{398}$. Let $r(R_n)=m$, where $n>e^{398}$. Then

m|n i.e. n=tm, hence $R_n|R_m$ and $R_m|R_n$ i.e. $|R_n|=|R_m|$. If D>0, then from the result of M. WARD [15] it follows that $r(R_n)=n$ for n>12. Thus if $|R_x|=|R_y|$, where min (x,y)>12, then $x=r(|R_x|)=r(|R_y|)=y$.

If D<0, then $|D| \ge 4$, because for D=-1, -2, -3 we get contradiction. Applying Lemma 1 and the fact $B=|\alpha|^2$ we get

$$|\alpha|^{n/2} < |R_n| \leq |R_m| < \frac{2|\alpha|^m}{\sqrt{|D|}} \leq |\alpha|^m,$$

i.e. $\frac{n}{2} < m$, hence n = m.

If $(R_x)=|R_y|$ where min $(x, y)>e^{398}$ then using our considerations above it follows

$$x = r(R_x) = r(R_y) = y$$
. \square

References

- [1] F. Beukers, The multiplicity of binary recurrences, Comp. Math. 40 (1980), 251-267.
- [2] K. Győry, On some arithmetical properties of Lucas and Lehmer numbers, Acta Arith. 40 (1982), 369—373.
- [3] K. GYŐRY, P. KISS and A. SCHINZEL, On Lucas and Lehmer sequences and their applications to Diophantine equations, Collog. Math. 45 (1981), 75—80.
- [4] P. Kiss, Differences of the terms of linear recurrences, Studia Sci. Math. Hung., (to appear).
- [5] K. K. KUBOTA, On a conjecture of Motgan Ward I, II., Acta Arith. 33 (1977), 11-48.
- [6] D. J. Lewis, Diophantine equation: p-adic methods, Studies in number theory 6, ed. W. J. Leveque, Englewood Cliffs, New Jersey, 1969.
- [7] I. Nemes and A. Pethő, Polynomial values in linear recurrences, Publ. Math. (Debrecen) 31 (1984), 229—233.
- [8] J. C. PARNAMI and T. N. SHOREY, Subsequences of binary recursive sequences, Acta Arith. 40 (1982), 193—196.
- [9] A. Pethő, Perfect powers in second order linear recurrences, J. of Number Theory 15 (1982),
- [10] T. N. SHOREY, A. VAN DER POORTEN, R. TIJDEMAN and A. SCHINZEL, Applications of the Gelfond Baker method to Diophantine equations, Transcendence Theory: Advances and Applications, Academic Press, New York, 1977.
- [11] T. N. Shorey and C. L. Stewart, On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences, *Math. Second.* **52** (1983), 24–36.
- [12] T. N. Shorey and C. L. Stewart, Pure powers in recurrence sequences and some related Diophantine equations, (to appear).
- [13] L. Somer, The generation of higher order linear recurrences from second order linear recurrences, Fibonacci Quart. 22 (1984), 98—100.
- recurrences, Fibonacci Quart. 22 (1984), 98—100.
 [14] C. L. STEWART, Primitive divisors of Lucas and Lehmer numbers, Transcendence Theory: Advances and Applications, Academic Press, New York, 1977.
- [15] M. WARD, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2), 62 (1955), 230-236

I. JOÓ AND B. M. PHONG MATHEMATICAL INSTITUT EÖTVÖS LORÁND UNIVERSITY H—1445 BUDAPEST 8, PF. 323, HUNGARY

(Received Jun: 8, 1986)