On two Diophantine equations concerning Lucas sequences

By I. JOO and B. M. PHONG (Budapest)

1. Introduction

A linear recurrence G={G,};>, of order k(=1) is defined by rational integers
Ay, As, ..., A, and by recursion

(N Gy = A4,Gp 1+ 4Gyt ... + 4Gy (n= k),

where the initial values G,, G,, ..., G;_, are fixed not all zero rational integers and
A, #0. Denote the distinct roots of the characteristic polynomial

2) f(x)=x—A,x*"1—... -4,

by o, t, ..., &, where o; has multiplicity m;. It is well known (see page 62 of [6])
that for n=0
G, = i(mai +fa(mai+ ... +fi(n)af,

where f;(n) is a polynomial of degree at most m;— 1, furthermore the coefficients of
fi(n) are algebraic numbers from the field Q(ay, ..., %,). We shall say that the se-
quence G is non-degenerate if 7>1 and o;|; is not a root of unity for 1=i<j=r.
In case k=2 the sequence G is called a second order recurrence, furthermore we say
that G is Lucas sequence if k=2, G,=0 and G;=1.

Let p,, ps. ..., p, be rational primes and denote S the set of rational integers
which have only these primes as prime factors.

In [3] K. GY6ry, P. Kiss and A. SHINZEL showed that if G is a non-degenerate
Lucas sequence, then
3) G.cS

holds only for finitely many sequences G and for finitely many integers x. K. Gy6ry
[2] improved this result giving explicit upper bound for x and for the constants of
the sequences which satisfy (3).

The Diophantine equation

@ G, = wy

was also studied by several authors. T. N. SHOREY and C. L. STEWART [11] proved
thatif y=1, g=1 and G is a non-degenerate recurrence of order k for which m;=1
and |o|=|%;| (j=2,...,1), then (4) implies the inequality g<=c¢, where ¢ is an
effectively computable constant in terms of w and the parameters of the sequence G.
They showed that x and y are also bounded for second order recurrences. A PETHO
[9] proved similar results for second order recurrences supposing (A4,, 4;)=1 and
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we S. For recent general results we refer to the papers by P. Kiss [4], I. NEmes and
A. PeETHO [7], T. N. SHorEY and C. L. STEWART [12] further to the references there.

The following problem remained open: if |a;|=|as|=...=|%], then the equation
(4) has finite or infinite solutions? The aim of the present paper is to investigate this
question.

Let G be a non-degenerate second order recurrence and 7 be an integer. Denote
m(t) the number of solutions x of the Diophantine equation G,=t. K. K. KuBoTaA
[5] proved that m(7)=4. F. BEUKERS [1] improved this result by showing m(r)+
+m(—1t)=3 with finitely many exceptions. He also proved that if G is non-degene-
rate Lucas sequence, then m(f)+m(—1t)=2 with at most three exceptions. J. C.
PArRNAMI and T. N. SHOREY [8] showed that there exists an effectively computable
number N=0 depending only on the sequence G such that the equation

(5) Gx = Gr

has no solutions in non-negative integers x, y with max (x, y)=N and x#y. Thus
m(r)=1 for all larger 1.
In below everywhere we denote Lucas sequences by R=R(A, B), that is

R, = AR,y —BR,_, (n=1)

where R,=0, R,=1 and A, B are non-zero integers with D=A4*—4B=0. It is
well known that

u!l _ﬂn
©) W g
where a, f are distinct roots of x*—Ax+B=0. For fixed integer k=1 we put
Rln

Ug(k):=k, Uy(k):= (n=1).

R,

As is known, U, (k)-s are integers. Denote U(k)={U,(k)}i=o- L. SoMER [13] proved
that the sequence U(k) is a linear integral recurrence of order k, furthermore the
order k is minimal. Indeed, using (6) we get

Un(k) = @)+ (@28 + ... + (@B**)" + (B*1)" = o+ ...+,

where o;=o*—i.pi-1. If D=0, then |u]|=...=|x|=|«|*"1. Consequently, the
investigation of the Diophantine equation
Uy(k) = wy?

has meaning. We shall prove the following two theorems.

Theorem 1. Let R be a non-degenerate Lucas sequence with (A, B)=1 and
k=1 be a fixed integer. Then the Diophantine equation U.(k)=wy? in integers
weS, q=3, x,|y|l=1 implies:

max (|wl, ¥, x, q) < C,
where C is an effectively computable constant depending only on A, B,k and S.

Theorem 2. Let R be a non-aegenerate Lucas sequence. Then the equation |R,|=
=|R,| has no solutions in non-negative integers x, y with x+y and min (x, y)=>e**.
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2. Auxiliary results and lemmas

We base the proof of the theorems on the following results, which were all
proved by Baker’s method.

Theorem A. Let F(z,t)€Q[z,t] be a binary form with F(1,0)#0 such that
among the linear factors in the linearisation of F at least two are distinct. Let d be a
positive integer. Then the equation

F(z,) = w
in integers weS, t€S, q=3, y,z with (z,t)=d, |y|=1 implies that
max (|wl, |1, [¥], |zl, q9) < C
where C is an effectively computable constant depending only on F, d and S.

This theorem is due to T. N. SHOREY, A. VAN DER PoorRTEN R. TUDEMAN and
A. ScHINzEeL [10].

Theorem B. Let « be an algebraic number of height at most H(=4) and degree d.
Let by and b, be integers with absolute values at most M(=4). If

A= b log(—1)+byloga # 0
then
f 2435 (3d)“ ]AI = €Xp (-CIOgH log M)
or c= : 3

This was proved by C. L. STEWART [14].

Lemma 1. Let R=R(A, B) be a non-degenerate Lucas sequence with condition
D=A*—4B<0. Then B=2 and

IR > BY* for n> ™.

PrOOF. Since R(A, B) is non-degenerate Lucas sequence, we have A*#B,
2B, 3B,4B. Thus if D=A4*-4B<=0, then B=2.
Let « and f be roots of x*— Ax+B=0. By our condition we obtain

Q) lal = IB| = VB.
By (6) we have

ﬁ n

-(3)

B

or"—ﬁ"l |x]”
8 R,. — — | T
W o ‘ V1D| VID|
r]

-

g
2Y1D]

where log denotes the principal value of the logarithm function and |f| =2n, because

el

smaller circular art. Set

tlog(—1)—nlog

is the length of a chord of unit circle which is greater than the half of the

B

A= rlog(—l)—nlog;.
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Since f/a is not a root of unity, we have A>0. Now apply the Theorem B to A.
It is easily seen that in our case H=2B, M=2n and d=2. Thus for n=2 we get

%) |A] > exp {—2**.3"1og 2B - log 2n}
= exp {—2%%.31og B-log 2n} = B—¥*:3""log2n
On the other hand it follows from 0<A%2<=4B that

|D| = |A*—2B|+|2B| = 2B+ 2B = 4B
and so

(10) :

|
- -
2Y|D| 4VB
Thus by (7), (8), (9) and (10) we obtain
IR,| > Bi2—24%-3%log2n—52)
and so |R,|=B"* if n=¢€**. O

Lemma 2. Let T={T,(x,¥)}m-o be a second order recurrence sequence defined
by the initial terms Ty=1, Ty=x+y and by the recursion

Tm - lell—l. —J’aTm—z-

= B2,

Then for any integer m=2
Tm(x, y) — -\”"+x"'—‘y—(m_ ])_\J—2y2_ e

is a binary form such that among the linear factors in the factorisation of T,(x,y)
at least two are distinct.

Proor. Let R=R(x,y?) bé Lucas sequence defined by parameters 4=x and
B=y* It is well known that

(Il) T, =T\R, _yz-Tl'JRm—l
for any m=1. On the other hand we have

[m—12 (i —1—1

(12) Ra(AB)=""3 ("} ') am-r-v. - my
i=0
and so by (11) and (12) we get
(13) Tm = (x+y)Rm“y2Rm——l — (me_ysz~l)+}'Rm = m+1+yRm —

[m/2] (g —1i Lo (m=1)2 (g —1 =] A ot
=2 (") 3 (0 )y -

i=0 j=0

[m/2] m—1I . lm—-1)2) m—1—j :
- = i[ : ]x""”‘ 2Ny ot J[ 2 ]'\Jn—(21+1)y2;+1 =
= X"+ X" ly—(m—1)x"-2y:—...,

from which it follows that T,,(x, ») is a binary form. Suppose that T, (x, 1)=(x—o)™.
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Then by (13)
m(m—1) ,
e e

follow. From these =2 and m= —1/2 follow, which is a contradiction since m is
an integer. [

—ma =1 and =—(m-1)

Lemma 3. Let H=H(A, B)={H,};_, be a second order recurrence sequence
defined by the initial terms H,=2, H,=A and by the recursion

H' = AH’-I'—'BH'_g (n = l)-
If (A,B)=1, then (H,,B)=1 for any n=0.
Proor. By the recursion we have

(Hy, B) = (Hy-1,B) =...= (H;,B) = (4,B)=1. O

3. Proofs of theorems

PrOOF OF THEOREM 1.

In the following ¢, ¢, ... will denote effectively computable constants depending
only on 4, B,k and S.
Suppose that the integers wéS, g=3, x,|y|=1 are solutions of

U.(k) = {::’ =

Let S, be the set of non-zero integers which are composed of prime divisors of B.
Put SQ=SUS1

First suppose that k=2m+1 (m=0 is integer). If m=1 then, using the explicit
form

(14) H,=o"+p"
for the terms of the sequence H defined in Lemma 3, we get
(15) wyt = U, (k) = U,(3) = (&*+p)—-B" = H}-B* =

{Fi (z,1) = 22— if x even
F(z, 1) = 22— Br* if x odd,

with n=[%], t=B", z=H,. One sees that F;(1,0)=1 for i=1,2 and in the

factorizaton of F; and F, the two linear factors are distinct. We note that (z, 1)=1
by Lemma 3.

It follows from Theorem A, that there exists an effectively computable constant
¢; depending only on F;, F, and S, such that for any integer solution 7€S,. wES,,
|y|>1, ¢=3, z of (15)

max (Iwl, l1, 1, 2], ¢) < ¢
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is satisfied. But F,, F,, S, therefore ¢, also depend only on A, B and S. Thus
lz| = |H,l < ¢

from which x<¢, follows. Thus in this case the Theorem is proved with
c=max (¢, ).
Now we suppose that m=2. Let z=H,,, t=B* and

T, = U, (20+1) = %— BT B

Using (6), (14) and the fact B=af}, for v>1 we have
T, = Hy T, ,—B%T,_y = 2T, — *T, _5
and T,=1, T1=U,(3)=H,,+B*=z+t. Thus
Tn=U,(2m+1) = U,(k) = wy*
from which using Lemma 2 and Theorem A we get

max (Iwl, |, |1, 12l, q) = ¢3

where ¢, depend only on A4, B, T,,(z, t) and S,. But T,(z, t) and S, depend only on
k, B and S.
Because |z|=|H,|=c;, hence x=<c; and

max (|w], |, x, g) < max (c3, ¢,).
Now let k=2m. If m=1, then according to

Uk)=U,(2)=H, = w)*
we have
max(IWI, |J"', X, Q) =G

because {H,};_,is a second order recurrence sequence.
Let m=2. Then

R R..
Ux(k) - Ux(zm) = ;" mx"R_' e wy".

It is known that (H,, R)=1 or2, hence H,.=w,y{, where w,€S,, x, y, are
integers. Hence forth
max (|wil, [yl mx, q) < ¢

follows and so |wy9-<c,, consequently

max (!wls Iyll X, Q) = Cg- O
PrOOF OF THEOREM 2.

Denote r=r(m) the smallest natural number for which m|R,.

First we prove that r(R,)=n if n>¢*®. Let r(R,)=m, where n>¢*®. Then
m|n i.e. n=tm, hence R,|R, and R,|R, ie. |R,|=|R,|.

If D=0, then from the result of M. WARD [15] it follows that r(R,)=n for
n>12. Thus if |R.=|R,|, where min(x,y)>12, then x=r(|R)=r(|R,)))=y.
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If D<0, then |D|=4, because for D=-1, —2, —3 we get contradiction.
Applying Lemma 1 and the fact B=|a|> we get
2™

2" < |Ry| = |Rn| < —=
V1D

= |o|™,

§ n
ie. 5-—-:0:, hence n=m.

If (R)=|R,| where min(x,y)=>¢** then using our considerations above it
follows

x=r(R)=r(R)=y. O
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