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Orthogonally additive mappings on free
inner product Z-modules

By JURG RATZ (Bern)

In memoriam Gydrgy Szabo

Abstract. It is known that, if X is a real inner product space of dimension at
least 2 and Y an abelian group, every solution of the conditional Cauchy functional
equation (x) (see below) is additive if it is odd and is quadratic if it is even. In this
paper the solutions of (*) are determined if X is a special free inner product Z - module.
If dimz X = 2, Theorem 15 expresses a serious deviation from the situation in the inner
product space case while Theorems 13 and 17 show that for dimyz X sufficiently large,
we have analogies to that case.

1. Introduction

If the sets X and Y are furnished with a binary operation + and X
furthermore with a binary relation _L, called orthogonality, then a mapping
f: X — Y is said to be orthogonally additive if it satisfies the conditional
Cauchy functional equation

(%) fx+2)= f(x)+ f(z) forall z,y € X with x L 2.

In recent applications, conditional functional equations generally play an
increasingly important role.

Orthogonal additivity has one of its roots in inner product spaces,
when L stems from an inner product; for a brief survey, we refer to the
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second half of the paper [7], where also the orthogonal additivity in the
Blaschke—Birkhoff-James sense over normed spaces is mentioned. Several
papers, the first being [8], treated orthogonal additivity under regularity
conditions. By a complete change of the methods of proof, all the regu-
larity conditions could be avoided a priori, and the following theorem was
obtained:

Theorem 1. If (X, (-,-)) is a real inner product space with dimp X >
2, ifx | z is defined by (z,z) =0 (z,z € X), and if Y is an abelian group,
then f : X — Y is a solution of (x) if and only if there exist additive
mappings | : R — Y and h : X — Y such that f(z) = I(||z]|?) + h(z)
(Vz € X) ([10], p. 43, Corollary 10; [14], Theorem 1; for more general
versions [11], p. 242, 246).

This result follows from theorems which separately treat the even and
the odd case in the framework of an axiomatic theory of orthogonality
spaces ([10], p. 38/39, Theorem 5 and 6; p. 41, Corollary 7). Roughly
speaking, here and in important other situations, the general even solution
of (x) is quadratic and its general odd solution is additive. PINSKER’s [8]
and other regularity results then follow as corollaries from Theorem 1 ([10],
p. 43-46). The following statement is also a consequence of Theorem 1; it
extends the already long list of characterizations of Hilbert spaces among
inner product spaces:

Corollary 2. For a real inner product space (X, (-,-)) withdimp X >
2, the following are equivalent:

(i) Every orthogonally additive f : X — R which is bounded below
attains a minimum.

(ii) X is a Hilbert space. ([10], p. 46, Corollary 15).

Further applications of Theorem 1 are the Boltzmann—Gronwall The-
orem in gas dynamics ([1], p. 191-194) and a premium calculation principle
in actuarial science ([5], section 3).

One of the actual objectives in the theory of the functional equation
(%) is its investigation beyond the general theory developed in [10], [11],
[12], [13] on vector spaces. It is the purpose of this paper to present results
about orthogonal additivity on a special class of free Z-modules (cf. [6] for
a related problem) and to compare them with those of the vector space
case.
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2. Notation and preliminaries

Throughout the paper, N, N°, Z, R denote the sets of positive in-
tegers, nonnegative integers, integers, real numbers, respectively. We use
0 for the identity element of the groups (X, +) and (Y,+) as well as for
the integer zero; it will always be clear from the context what is meant.
c is the symbol for the constant mapping with value ¢, and := means that
the right hand side defines the left hand side. Finally, = )= is used for
quoting the earlier result (...).

Remark 3. A free Z-module X is, up to isomorphy, a direct sum
ZW) = ®jesX; where X; = Z for all j € J and where J is an appropriate
index set. The elements e; := (dx)res (j € J) (Kronecker symbols)
constitute a basis of the free Z-module Z(/), the so-called canonical basis.
Since Z is a commutative ring # {0}, every free Z-module X has a well-
defined dimension dimyz X. Of course, dimy Z(/) = card J. ([3], p. 41, 42,
150, 151).

In the notation (b;);cs for a basis of a free Z-module, we always
assume b; # by, for j,k € J, j # k.

Definition 4. If (bj);cs is a basis of a free Z-module X, then (-,-) :

X x X — Z defined by (z,2) := > pjq; (x =) pibj € X, 2= q;b; €
j€J jeJ j€J

X) is called the standard inner product on X associated with (b;);c.

(Notice that all sums over J with running index j automatically contain

only a finite number of nonzero summands). We briefly write ) for > .

jedJ
(X, (bj)jes,(-,-)), sometimes more briefly denoted by X, is then said to
be a free standard inner product Z-module (FSIP Z-module).

(0) For x,z € X, we define z L z :<= (z,2) = 0.

Lemma 5. If (X, (bj)jes,(-,-)) is a FSIP Z-module, then we have:

a) (-,-) is Z-bilinear, symmetric, and positive definite.

r,2€X;x2 1l z;pg€ Z = pxr L qz.

)
b) (bj,br) =0 (Vj,k € J), i.e., (bj)jcs is an orthonormal basis.
c)

)

d) j,keJ;p,ge Z = (p(bj +bx),q(b; —by)) = 0.

The routine proof is omitted.
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Definition 6. a) If X is a FSIP Z-module and (Y, +) an abelian group,
a mapping f : X — Y is called orthogonally additive if

(%) flx+2)=f(x)+ f(z) forall z,z€ X withz L z

holds.

Hom, (X,Y") denotes the set of all solutions f of (x),
(e)Hom, (X,Y) := {g € Hom, (X,Y); g even },
(o)Hom, (X,Y) :={h € Hom, (X,Y); h odd }.

b) Hom(X,Y) := Homz(X,Y) = {f : X = Y;f(z + 2) = f(x) +
f(2)(x,z € X)} is the set of all additive mappings f: X — Y.

c) Quad(X,Y):={f: X —Y; f satisfies (JuN)} where
(JuN): f(z+2)+ f(xr — 2) =2f(z) + 2f(2)(Vz,z € X) is the set of
all quadratic mappings f: X — Y.

Definition 7. We say that the abelian group (Y,+) is uniquely 2-
divisible if the mapping w : Y — Y, w(y) := 2y (Vy € Y) is bijective.
Then both w and w™! are automorphisms of (Y, +), and we write %y for
W™l (y)-

Lemma 8. For a FSIP Z-module X and an abelian group (Y,+) we
have:

a) Hom(X,Y) C (o)Hom, (X,Y) € Hom,(X,Y) C {f : X — Y;
f(0) = 0}.

b) f e Homy (X,Y); f(z) = f(—z)(Vx € X) = f € Hom, (X,Y).

c) f,bg€Hom, (X,Y) = f+g, f—g € Hom, (X,Y).

d) (Y, +) uniquely 2-divisible, f € Hom | (X,Y), g(z) := 3[f(z)+f(-=)],
h(z) = 3[f(z) — f(-2)](Va € X) = g € (e)Hom (X,Y), h €
(o)Hom, (X,Y), f =g+ h.

PRrROOF. a) The first two inclusions are evident. By (0),0 L 0, so
f(0) = f(04+0) = f(0)+ f(0), ie., f(0)=0. —b)Ifz,z € X, x L z, then
by (0) (=) L (=2), and then f(z +2) = f(~z — 2) = f(=2) + f(~2) =
f(z)+ f(2). — c) is straightforward, and d) follows from b) and c).
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3. Main results

Throughout this section we suppose that (X, (b;)jes, (-,-)) be a FSIP
Z-module and (Y, +) an abelian group.

Remark 9. We first separate the case dimyz X < 1 from the rest of the
theory.
a) If dimz X = 0, then by Lemma 8a) Hom, (X,Y’) = {0}.
b) If dimy X = 1, {b} a basis of X, then we have for z,z € X,
x = pb, z = ¢qb by Definition 4 (z, z) = pq, therefore by (0)

(1) r,2€ X = [z L z<=2=0and/or z=0].

Let be f: X =Y, f(0)=0,and z,z € X, z L z. By (1) x = 0 and/or

z=0,say z = 0. flz+2) = fx) = flz) + f(0) = f(z) + f(2). So
f € Hom, (X,Y), and together with Lemma 8a) we get

(2) Hom, (X,Y) = {f: X — Y; f(0) = 0}.

Hence in the case dimy X < 1, the determination of Hom (X,Y) is
completely settled.

Ezample 10. Let be dimz X = 1,{b} a basis of X, Y # {0}, a €
Y\{0}. Define h: X — Y by

a (p>0)
h(pb) = 0 (p=0) (pe2).
—a (p<0)

Then h(2b) = a, h(b) = a, 2h(b) = 2a, so h(2b) # 2h(b). This shows
that h ¢ Hom(X,Y). But by (2), h € Hom, (X,Y) and h is odd, i.e.,

(o)Hom, (X,Y) ¢ Hom(X,Y),

which means that the first inclusion in Lemma 8a) may be strict.

Ezample 11. Let be dimz X = 1,{b} a basis of X, and assume that
there exists a € Y such that a # 4a. Define g: X — Y by

Cfa pez\op
9(pb) = { 0 (p=0)
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Then ¢(2b) = a, g(b) = a, 4g9(b) = 4a, so g(2b) # 4g(b). Assume that
g € Quad(X,Y). Then put z = z = b in (JuN) to obtain g(2b) + ¢g(0) =
2g(b) + 2g(b), i.e., g(2b) = 4¢(b), contradiction. So g ¢ Quad(X,Y), but
by (2) g € Hom, (X,Y), and g is even, therefore

(e) Hom  (X,Y) ¢ Quad(X,Y).

We now turn to the case dimz X > 2 where we shall find situations
contrasting with those in Examples 10 and 11.

Lemma 12. If f,g € Hom (X,Y), then we have:

(3) f@) =" fpb;) forz=> p;b € X.

(4) g even; jkelJ, j#k

p € Z even = g(pb;) =2g (gbj) +2g (gbk) .

PRrROOF. (3): By Lemma 8a), f(0) = 0, so a zero summand p;b; of
> pjb; produces a zero summand of ) f(p;b;). (3) is a matter of finite
sums and is established by induction on the number of nonzero summands
starting from Lemma 5a), b), c¢) and from (x). — (4): g(pb;) = g[5(b; +
be) + 5(bj — b)) =rsa= gl5(b; + b)) + gl5(b; — b)) == g (5b;) +
9 (8b%) + 9 (5b;) + 9 (50x) = 29 (5;) + 29 (5bx).

Theorem 13. If dimyz X > 2, then (o) Hom, (X,Y) = Hom(X,Y').
ProoF. i) Hom(X,Y) C (o) Hom, (X,Y") follows from Lemma 8a).

ii) Assume that h € (o) Hom, (X,Y’). By partially using a method in [4],
p. 4.74/4.75, we show that

(5) (H,j,p): h(pb;) = ph(b;) holds for all j € J and all p € Z.

p=0: By Lemma 8a) h(0) =0, so (H, j,0) holds for all j € J.
p=1:(H,7,1) trivially holds for all j € J.

Let be n € N, n > 2, and assume that (H,j,p) holds for all p € N°
such that p < n — 1 and for all j € J. Let be j € J arbitrary and choose
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k € J\{j} arbitrary (notice that dimzX > 2). Then we get

hlnb; 4 (n — 2)bx] = h{(n — 1)(b; + b)) + (b; — by)]
(6) =L.5d= h[(n — 1)(b; + b)] 4+ h(b; — by) =(3)
= h[(n — 1)b;] + h[(n — 1)bi] + h(b;) — h(bk)
=(H,jn—1),(H kn-1)= (0 = 1)h(bj) + (n — 1)h(br) + h(b;) — h(by)
= nh(bj) + (n — 2)h(by).

On the other hand

hlnbj + (n — 2)by] =(3)= h(nb;) + h{(n — 2)bk] = (a1 kn—2)

(7) = h(nb;) + (n — 2)h(by).

From (6) and (7) we obtain h(nb;) = nh(b;). Analogously, with j, k inter-
changed, h(nby) = nh(by), so (H, j,n) holds for all n € N° and all j € J,

ie.,

(8) h(nb;) = nh(b;)(¥n € N Vj € J).

Let be p € Z, p <0, and j € J arbitrary. Then h(pb;) = h(—(—p)b;) =
—h((=p)b;) =(s)= ph(b;). This and (8) imply (5).

Let be z,z € X arbitrary, say x = ) p;b;, 2 = > qjb;, so x + z =
>_(pj +4;)(b;), and we have h(z+2) =)= 2_ hl(p; +¢;)bs] =5= 2 (p; +
q5)h(b;) = 22pih(bs) + 22 ah(b;) == 22 h(pibs) + - h(gib;) =)=
h(>-pjb;) + h (> q;bj) = h(z) + h(z). Therefore h € Hom(X,Y), and
(o)Hom, (X,Y) C Hom(X,Y) is established, which completes the proof.

Remark 1. A more explicit form of h € Hom(X,Y) is of course
(9)  h(z) =) _pjc; forx=> p;bj € X and ¢; :=h(b;) (Vj € J).

Theorem 15. If dimz X = 2 and the basis (b;);jcs is denoted by
(b1,b2), then g : X — Y belongs to (e)Hom, (X,Y) if and only if there
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exist a1, as € Y such that

(10)  g(p1b1 + paba) = g(p1b1) + g(p2b2) (Vp1,p2 € Z),
(1) 9(ph1) = g(pbs) = 301 + ) (v € 7 even),
(12) o(ph) = 5+ Dan + 507 Doz (p € 7 od),
(13) g(pbs) = %(p2 —Da; + %(pZ +1Day  (p € Z odd).

PROOF. i) Assume that g € (e) Hom, (X,Y"). (10) is implied by (3),
and (4) leads to

(14) 9(pb1) = g(pb2) = 2g (§b1> +2g <§b2> (p € Z even).
We put

(15) ap :=g(b1), az:= g(ba)

and prove (11), (12), (13) by induction on p; evenness of g implies that we
need only consider p € N°. ¢(0) = 0 (from Lemma 8a)) and (15) guarantee
that (11), (12), (13) hold for p = 0, p = 1, respectively.

Let be p € N odd and assume that (11), (12), (13) hold for g(rb;),
g(sbz) where 0 < r,s < p. Since p + 1 is even, (14) yields

16) g+ o] = gllp+ el =20 (25 00 ) 20 (25 0e).

From 1 < p we conclude pTH < p so that (11), (12), (13) can be applied

to the right hand side of (16).

Case 1: pTH is even. By (11) for % we get

(17) 9<p;1b1>=9<p—;152)=;<p;1>2(a1+a2),

2
s0 gl(p+1)b1] = gl(p+1)b2] =(16),am= 2 (E51) " (a1 +a2) = 3(p+1)*(a1 +
az), which means that (11),4; holds here.
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Case 2: 2t is odd. By (12), (13) for 2 we get
p+1.\  lr/p+1y?
18 o) =5l(%7) e
1

2
(19) g<p+1b2>=§[(]%1>2—1}a1+

_l’_

S0 gl(p+1)b1] = gl(p+1)ba] =(16),08),00)= [(25)" +1] @+ [(252)" 1] -
oot ()" 1 e [(35)°11] =2 (35" @1 42 (35) ca=h 1)
(a1 + az), and (11),41 holds again. In the total, (11),11 holds in every

We now turn to (12),42, (13),42; notice that p+2 is odd. By (3) and

evenness of g we obtain
gl(p + 1)b1 + ba] = g[(p + 1)b1] + g(b2),

(20)
glbr — (p+ 1)ba] = g(b1) + g[(p + 1)ba].

Taking into account (p+ 1)b; + by L by — (p+ 1)be, we infer g[(p + 2)b1] +
9(pb2) =3)= g[(p+2)b1—pba] = g[(p+1)b1+b2+b1—(p+1)bo] =)= g[(p+
1)by +b2] +g[br — (p+1)b2] =(20)= g[(p+1)b1] +g(b2) +g(b1) +g[(p+1)b2],
e, by (13)p, (15), (10)ysr = g[(p+ 2)bi] + S0 — Dy + 1 + Laz =
(p+1)%(a1 +az) + a1 +ag, ie, gl(p+2)b1] = [(p+1)* +1—5(p* — D)]ar +
(p+1)2+1— 2>+ Daz = 1 [(p +2)% + as + 2[(p + 2)2 — 1]as, which
means that (12),42 holds. (13),12 is obtained in a similar way. Therefore,
(10), (11), (12), (13) do hold.

ii) Conversely, assume that a;,a2 € Y and g : X — Y are such that
(10), (11), (12), (13) hold. Then g obviously is even. p = 1 in (12), (13)

gives
(21) g(b1) = a1, g(b2) = as.

Let be z,2z € X arbitrary, but fixed for the moment, x 1 z, say z =
P1b1 + p2ba,: 2 = q1b1 + g2b2. By Definition 4

(22) P1q1 +p2qe = (x,2) =0,
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hence

(23) (P +q1)* + (P2 + @2)° = Pi + af +p3 + a5

By (22) the following cases of parity constellations for pi1, q1, p2, g2 are
excluded: Three numbers odd, one number even (4 cases); p; and ¢; odd,
p2 and g even, or conversely (2 cases). On the basis of (23), we find by
inspection in the ten remaining cases that always

gl(p1 + q1)b1] + g[(p2 + g2)b2] = g(p1b1) + g(p2ba) + g(q1b1) + g(gab2)

is valid, so by (10) g(x + 2) = g(x) + g(2). As x,z € X with z L z were
arbitrary, we got ¢ € Hom (X,Y), and in the total g € (e) Hom, (X,Y).

Remark 16. a) The procedure in part i) of the proof of Theorem 15 is
different from that in the vector space case. There we have the conclusion

(24) ge(e)Hom, (X, Y);z,ze Xs2+2zLlax—2z = g(x) =g(2)

([10], p. 39, Theorem 6, iii). Here (24) is not available in general since the
choice a; # ag, possible by Theorem 15 if Y allows it, leads to g(b1) # g(b2)
although by + b2 L by — by (Lemma 5d)). On the other hand, (11) is a
weak substitute of (24), but (11) is restricted to p even, and the difference
has its origin in the missing 2-divisibility of the free Z-module X.

b) In the vector space case we have (e) Hom, (X,Y) C Quad(X,Y)
for X at least 2-dimensional ([10], p. 39, Theorem 6). In the context of the
present Theorem 15, a mapping ¢g € (e) Hom, (X,Y) is quadratic if and
only if 2a; = 2as, i.e., if and only if w(a;) = w(ag); if w is injective, this is
equivalent to a; = ag. In fact: i) Let g € Quad(X,Y’). By (11), ¢(0) = 0,
and x = z in (JuN) gives g(2z) = 4g(z) (Vo € X). So 2(a1 + a2) =)=
g(2b1) = 4g(b1) =(12)= 4ay, i.e., 2a2 = 2a;. — ii) Let be 2a; = 2ay. If p
is even, then 4 | p?, so $p*(a1 + az) = 1p?(2a1 + 2a2) = p*ay = p?as. If p
is odd, then 4 | (p? — 1), and 3(p* + 1)as + 5 (p* — Dag = 5(p* — 1)(a1 +
as) +a; = i(p2 —1)(2a1 + 2as) + a; = (p?> — 1)a; + a1 = p?aq, and in an
analogous way we obtain 3 (p?—1)a1+1 (p>+1)az = p?as. So by (10), (11),
(12); (13) g(p1b1 + p2bz) = g(p1b1) + g(p2b2) = piar + pias(Vp1,p2 € Z),
consequently g € Quad(X,Y).
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c) Part b) shows how to construct non-quadratic g € (e) Hom (Z2,Y).
Such a g cannot be extended to a g € (e) Hom | (R?,Y), R? being equipped
with the standard inner product, for g would have to be quadratic as a
restriction of a quadratic mapping g.

d) It turns out that Theorem 15 describes an exceptional case because
we have:

Theorem 17. Ifdimz X > 3, then g : X — Y belongs to
(e)Hom, (X,Y") if and only if there exist elements a; € Y (j € J) with
2a; = 2ay, for all j,k € J and g(x) = Y p3a; for all x =Y p;b; € X.

PRrROOF. i) Let be g € (e¢) Hom, (X,Y). Put
(25) aj = glby) (¥ €J).

Let be j,k € J with j # k. Since dimyz X > 3, there exists [ € J such
that [ # j,l # k. By (4), g(2b;) = 2g(bi) + 29(b;) as well as g(2b;) =
2g(bi) + 29(bx), so by (25)

(26) 2a; = 2g(b;) = 29(bx) = 2ay,

and this trivially holds also for j = k. Now we show by induction on p
that

(27) (Q,4,p):  g(pbj) = p2aj holds for all j € J and all p € Z.

Evenness of g implies that we need only consider p € N°. g(0) = 0 (ensured
by Lemma 8a)) and (25) guarantee that (@, j,0) and (@, j,1) hold for all
jedJ.

Let be n € N,n > 2, and assume that (Q,,p) holds for all p € N°
such that p <n —1 and for all j € J. Let be j, k € J, j # k, arbitrary.

glnb; + (n = 2)b] = g[(n — 1)(b; + bx) + (b; — by)] =L.5a
(28) = g[(n — 1)(b; + bk)] + g(bj — bi) =)
= gl(n = 1)bs] + g[(n — 1)be] + g(b;) + g(br)
=(Quim=1).(Qkm—-1)= (0 = 1)2g(b;) + (n — 1)%g(bx) + g(bj) + g(br) = (25
=[(n—1)? +1](a; + ax).
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On the other hand,

glnb; + (n — 2)b] =)= g(nb;) + gl(n — 2)bx] =@ .kn—2)

B gtuby) + (0= 22(0n) =y = glby) + (1 — 2%

From (28) and (29) we obtain g(nb;) = [(n — 1)? + 1]a; + [(n — 1) + 1 —
(n —2)%lar = (n® = 2n + 2)a; + (2n — 2)ar =@e= (n® — 2n + 2)a; +
(2n — 2)a; = n?a;. Analogously, with j, k interchanged, we obtain also
g(nby) = n%ai. So (Q,j,n) holds for all j € J, and by induction, (27) is
established.

If x = ) p;jb; € X is arbitrary, then g(x) =@3y= Y g(p;b;) =@n=
Zp?aj, i.e., g has the form required.

ii) Assume that there exist a; € Y (j € J) such that 2a;=2ay, (Vj, keJ)
and g(z) = Ep?aj for all z = > p;b; € X. Let be z,2 € X, z L z, say
x = p;jbj, z=>qjb;, so v+ z = (p;j + q;)b;. By Definition 4

(30) ij 4 = =0

Let d be the common value of all elements 2a;(j € J). Then g(z + 2) =
>o(pj+a5)?a; = (07 +2pa5 +q37)a; = Yopia;+ 3o pig;-2a;+ Y qja; =
9(@) + 2°p;¢; - d + 9(2) =@o)= 9(x) + g(2). So g € Hom, (X,Y), and
obviously g is even.

Remark 18. a) The mappings g : X — Y of the form g(z) = Y pa;
for all x = > p;b; € X, as occurring in Theorem 17, are quadratic no
matter whether 2a; = 2a(Vj,k € J) or not. In fact: If also z =) ¢;b; €
X, then g(z+2)+g(x—2) = YX(pj+4;)a; +3(p;—¢5)%a; = Sl(pj+4;)°+
(pj — a5)%a; = 22(2pF + 247 )a; =23 pia; +23 ¢Ga; = 29(x) + 29(2).

b) A quadratic mapping g : X — Z satisfying 2¢(b;) = 2¢(by)(VJ, ke
J) need not be in (e) Hom, (X, Z). This shows that the quadratic map-
pings occurring in Theorem 17 form a very special class in Quad(X,Y)
In fact: g(z) = (3 p;)? for x = > p;b; € X. For z,2 € X we have

o2 ole—2) = (St H0s—0)F = (st S0+
S = AT p)? + 25 4)? = 29(2) + 29(2), e g € Quad(X, 2).
Furthermore g(b;) = 1(Vj € J). If dimz X > 2 and b; L by, then

g(bj +br) = 2% # 2 = g(bj) + g(bk), ie., g ¢ (e) Hom | (X, Z).
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Remark 19. Theorems 13 and 17 and Remark 18a) show that for
sufficiently large dimension of X,

(31) (o)Hom, (X,Y) = Hom(X,Y),
(32) (e)Hom, (X,Y) C Quad(X,Y),

and Remark 18b) shows that the inclusion in (32) may be strict. Examples
10 and 11 demonstrate that (31), (32) do not hold for dimz X = 1. Theo-
rem 15 exhibits the exceptional case for (¢) Hom (X,Y) when dimyz X = 2
where (32) still can be violated for suitable groups Y. The proof of The-
orem 17 shows in what way the hypothesis dimz X > 3 enforces the con-
dition (26) 2a; = 2ax(Vj,k € J) and then the quadratic character of
the mapping ¢ considered there (for the 2-dimensional situation cf. Re-
mark 16b).

There are many situations in connection with inner product spaces
for which dimension 2 is exceptional. The most prominent one might be
the characterization of inner product spaces among normed spaces where
certain conditions are effective only for dim X > 3 ([2], p. 97-156). For a
much simpler question concerning a characterization of the inner product
on real and complex vector spaces cf. [9].
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