Orthogonally additive mappings on free inner product Z-modules

By JÜRG RÄTZ (Bern)

In memoriam György Szabó

Abstract

It is known that, if X is a real inner product space of dimension at least 2 and Y an abelian group, every solution of the conditional Cauchy functional equation $(*)$ (see below) is additive if it is odd and is quadratic if it is even. In this paper the solutions of $(*)$ are determined if X is a special free inner product Z - module. If $\operatorname{dim}_{Z} X=2$, Theorem 15 expresses a serious deviation from the situation in the inner product space case while Theorems 13 and 17 show that for $\operatorname{dim}_{Z} X$ sufficiently large, we have analogies to that case.

1. Introduction

If the sets X and Y are furnished with a binary operation + and X furthermore with a binary relation \perp, called orthogonality, then a mapping $f: X \rightarrow Y$ is said to be orthogonally additive if it satisfies the conditional Cauchy functional equation

$$
\begin{equation*}
f(x+z)=f(x)+f(z) \quad \text { for all } x, y \in X \text { with } x \perp z . \tag{*}
\end{equation*}
$$

In recent applications, conditional functional equations generally play an increasingly important role.

Orthogonal additivity has one of its roots in inner product spaces, when \perp stems from an inner product; for a brief survey, we refer to the
second half of the paper [7], where also the orthogonal additivity in the Blaschke-Birkhoff-James sense over normed spaces is mentioned. Several papers, the first being [8], treated orthogonal additivity under regularity conditions. By a complete change of the methods of proof, all the regularity conditions could be avoided a priori, and the following theorem was obtained:

Theorem 1. If $(X,\langle\cdot, \cdot\rangle)$ is a real inner product space with $\operatorname{dim}_{R} X \geq$ 2, if $x \perp z$ is defined by $\langle x, z\rangle=0(x, z \in X)$, and if Y is an abelian group, then $f: X \rightarrow Y$ is a solution of (*) if and only if there exist additive mappings $l: R \rightarrow Y$ and $h: X \rightarrow Y$ such that $f(x)=l\left(\|x\|^{2}\right)+h(x)$ $(\forall x \in X)([10]$, p. 43, Corollary 10; [14], Theorem 1; for more general versions [11], p. 242, 246).

This result follows from theorems which separately treat the even and the odd case in the framework of an axiomatic theory of orthogonality spaces ([10], p. 38/39, Theorem 5 and 6 ; p. 41, Corollary 7). Roughly speaking, here and in important other situations, the general even solution of $(*)$ is quadratic and its general odd solution is additive. Pinsker's [8] and other regularity results then follow as corollaries from Theorem 1 ([10], p. 43-46). The following statement is also a consequence of Theorem 1; it extends the already long list of characterizations of Hilbert spaces among inner product spaces:

Corollary 2. For a real inner product space $(X,\langle\cdot, \cdot\rangle)$ with $\operatorname{dim}_{R} X \geq$ 2 , the following are equivalent:
(i) Every orthogonally additive $f: X \rightarrow R$ which is bounded below attains a minimum.
(ii) X is a Hilbert space. ([10], p. 46, Corollary 15).

Further applications of Theorem 1 are the Boltzmann-Gronwall Theorem in gas dynamics ([1], p. 191-194) and a premium calculation principle in actuarial science ([5], section 3).

One of the actual objectives in the theory of the functional equation $(*)$ is its investigation beyond the general theory developed in [10], [11], [12], [13] on vector spaces. It is the purpose of this paper to present results about orthogonal additivity on a special class of free Z-modules (cf. [6] for a related problem) and to compare them with those of the vector space case.

2. Notation and preliminaries

Throughout the paper, N, N^{0}, Z, R denote the sets of positive integers, nonnegative integers, integers, real numbers, respectively. We use 0 for the identity element of the groups $(X,+)$ and $(Y,+)$ as well as for the integer zero; it will always be clear from the context what is meant. \underline{c} is the symbol for the constant mapping with value c, and $:=$ means that the right hand side defines the left hand side. Finally, $=_{(\ldots)}=$ is used for quoting the earlier result (...).

Remark 3. A free Z-module X is, up to isomorphy, a direct sum $Z^{(J)}:=\oplus_{j \in J} X_{j}$ where $X_{j}=Z$ for all $j \in J$ and where J is an appropriate index set. The elements $e_{j}:=\left(\delta_{j k}\right)_{k \in J}(j \in J)$ (Kronecker symbols) constitute a basis of the free Z-module $Z^{(J)}$, the so-called canonical basis. Since Z is a commutative ring $\neq\{0\}$, every free Z-module X has a welldefined dimension $\operatorname{dim}_{Z} X$. Of course, $\operatorname{dim}_{Z} Z^{(J)}=\operatorname{card} J$. ([3], p. 41, 42, $150,151)$.

In the notation $\left(b_{j}\right)_{j \in J}$ for a basis of a free Z-module, we always assume $b_{j} \neq b_{k}$ for $j, k \in J, j \neq k$.

Definition 4. If $\left(b_{j}\right)_{j \in J}$ is a basis of a free Z-module X, then $\langle\cdot, \cdot\rangle$: $X \times X \rightarrow Z$ defined by $\langle x, z\rangle:=\sum_{j \in J} p_{j} q_{j}\left(x=\sum_{j \in J} p_{j} b_{j} \in X, z=\sum_{j \in J} q_{j} b_{j} \in\right.$ $X)$ is called the standard inner product on X associated with $\left(b_{j}\right)_{j \in J}$. (Notice that all sums over J with running index j automatically contain only a finite number of nonzero summands). We briefly write \sum for $\sum_{j \in J}$. $\left(X,\left(b_{j}\right)_{j \in J},\langle\cdot, \cdot\rangle\right)$, sometimes more briefly denoted by X, is then said to be a free standard inner product Z-module (FSIP Z-module).

$$
\begin{equation*}
\text { For } x, z \in X \text {, we define } x \perp z: \Longleftrightarrow\langle x, z\rangle=0 \text {. } \tag{0}
\end{equation*}
$$

Lemma 5. If $\left(X,\left(b_{j}\right)_{j \in J},\langle\cdot, \cdot\rangle\right)$ is a FSIP Z-module, then we have:
a) $\langle\cdot, \cdot\rangle$ is Z-bilinear, symmetric, and positive definite.
b) $\left\langle b_{j}, b_{k}\right\rangle=\delta_{j k}(\forall j, k \in J)$, i.e., $\left(b_{j}\right)_{j \in J}$ is an orthonormal basis.
c) $x, z \in X ; x \perp z ; p, q \in Z \Longrightarrow p x \perp q z$.
d) $j, k \in J ; p, q \in Z \Longrightarrow\left\langle p\left(b_{j}+b_{k}\right), q\left(b_{j}-b_{k}\right)\right\rangle=0$.

The routine proof is omitted.

Definition 6. a) If X is a FSIP Z-module and $(Y,+)$ an abelian group, a mapping $f: X \rightarrow Y$ is called orthogonally additive if

$$
\begin{equation*}
f(x+z)=f(x)+f(z) \quad \text { for all } x, z \in X \text { with } x \perp z \tag{*}
\end{equation*}
$$

holds.
$\operatorname{Hom}_{\perp}(X, Y)$ denotes the set of all solutions f of $(*)$,
(e) $\operatorname{Hom}_{\perp}(X, Y):=\left\{g \in \operatorname{Hom}_{\perp}(X, Y) ; g\right.$ even $\}$,
(o) $\operatorname{Hom}_{\perp}(X, Y):=\left\{h \in \operatorname{Hom}_{\perp}(X, Y) ; h\right.$ odd $\}$.
b) $\operatorname{Hom}(X, Y):=\operatorname{Hom}_{Z}(X, Y)=\{f: X \rightarrow Y ; f(x+z)=f(x)+$ $f(z)(x, z \in X)\}$ is the set of all additive mappings $f: X \rightarrow Y$.
c) $\operatorname{Quad}(X, Y):=\{f: X \rightarrow Y ; f$ satisfies $(J v N)\}$ where
$(J v N): f(x+z)+f(x-z)=2 f(x)+2 f(z)(\forall x, z \in X)$ is the set of all quadratic mappings $f: X \rightarrow Y$.

Definition 7. We say that the abelian group $(Y,+)$ is uniquely 2divisible if the mapping $\omega: Y \rightarrow Y, \omega(y):=2 y(\forall y \in Y)$ is bijective. Then both ω and ω^{-1} are automorphisms of $(Y,+)$, and we write $\frac{1}{2} y$ for $\omega^{-1}(y)$.

Lemma 8. For a FSIP Z-module X and an abelian group $(Y,+)$ we have:
a) $\operatorname{Hom}(X, Y) \subset(o) \operatorname{Hom}_{\perp}(X, Y) \subset \operatorname{Hom}_{\perp}(X, Y) \subset\{f: X \rightarrow Y$; $f(0)=0\}$.
b) $f \in \operatorname{Hom}_{\perp}(X, Y) ; \tilde{f}(x):=f(-x)(\forall x \in X) \Longrightarrow \tilde{f} \in \operatorname{Hom}_{\perp}(X, Y)$.
c) $f, g \in \operatorname{Hom}_{\perp}(X, Y) \Longrightarrow f+g, f-g \in \operatorname{Hom}_{\perp}(X, Y)$.
d) $(Y,+)$ uniquely 2-divisible, $f \in \operatorname{Hom}_{\perp}(X, Y), g(x):=\frac{1}{2}[f(x)+f(-x)]$, $h(x):=\frac{1}{2}[f(x)-f(-x)](\forall x \in X) \Longrightarrow g \in(\mathrm{e}) \operatorname{Hom}_{\perp}(X, Y), h \in$ (o) $\operatorname{Hom}_{\perp}(X, Y), f=g+h$.

Proof. a) The first two inclusions are evident. By (0) , $0 \perp 0$, so $f(0)=f(0+0)=f(0)+f(0)$, i.e., $f(0)=0$. - b) If $x, z \in X, x \perp z$, then by $(0)(-x) \perp(-z)$, and then $\tilde{f}(x+z)=f(-x-z)=f(-x)+f(-z)=$ $\tilde{f}(x)+\tilde{f}(z)$ - c) is straightforward, and d) follows from b) and c).

3. Main results

Throughout this section we suppose that $\left(X,\left(b_{j}\right)_{j \in J},\langle\cdot, \cdot\rangle\right)$ be a FSIP Z-module and $(Y,+)$ an abelian group.

Remark 9. We first separate the case $\operatorname{dim}_{Z} X \leq 1$ from the rest of the theory.
a) If $\operatorname{dim}_{Z} X=0$, then by Lemma 8a) $\operatorname{Hom}_{\perp}(X, Y)=\{\underline{0}\}$.
b) If $\operatorname{dim}_{Z} X=1,\{b\}$ a basis of X, then we have for $x, z \in X$, $x=p b, z=q b$ by Definition $4\langle x, z\rangle=p q$, therefore by (0)

$$
\begin{equation*}
x, z \in X \Longrightarrow[x \perp z \Longleftrightarrow x=0 \text { and/or } z=0] . \tag{1}
\end{equation*}
$$

Let be $f: X \rightarrow Y, f(0)=0$, and $x, z \in X, x \perp z$. By (1) $x=0$ and/or $z=0$, say $z=0 . \quad f(x+z)=f(x)=f(x)+f(0)=f(x)+f(z)$. So $f \in \operatorname{Hom}_{\perp}(X, Y)$, and together with Lemma 8a) we get

$$
\begin{equation*}
\operatorname{Hom}_{\perp}(X, Y)=\{f: X \rightarrow Y ; f(0)=0\} . \tag{2}
\end{equation*}
$$

Hence in the case $\operatorname{dim}_{Z} X \leq 1$, the determination of $\operatorname{Hom}_{\perp}(X, Y)$ is completely settled.

Example 10. Let be $\operatorname{dim}_{Z} X=1,\{b\}$ a basis of $X, Y \neq\{0\}, a \in$ $Y \backslash\{0\}$. Define $h: X \rightarrow Y$ by

$$
h(p b)=\left\{\begin{array}{rr}
a & (p>0) \\
0 & (p=0) \\
-a & (p<0)
\end{array} \quad(p \in Z) .\right.
$$

Then $h(2 b)=a, h(b)=a, 2 h(b)=2 a$, so $h(2 b) \neq 2 h(b)$. This shows that $h \notin \operatorname{Hom}(X, Y)$. But by (2), $h \in \operatorname{Hom}_{\perp}(X, Y)$ and h is odd, i.e.,

$$
\text { (o) } \operatorname{Hom}_{\perp}(X, Y) \not \subset \operatorname{Hom}(X, Y)
$$

which means that the first inclusion in Lemma 8a) may be strict.
Example 11. Let be $\operatorname{dim}_{Z} X=1,\{b\}$ a basis of X, and assume that there exists $a \in Y$ such that $a \neq 4 a$. Define $g: X \rightarrow Y$ by

$$
g(p b)= \begin{cases}a & (p \in Z \backslash\{0\}) \\ 0 & (p=0)\end{cases}
$$

Then $g(2 b)=a, g(b)=a, 4 g(b)=4 a$, so $g(2 b) \neq 4 g(b)$. Assume that $g \in \operatorname{Quad}(X, Y)$. Then put $x=z=b$ in $(J v N)$ to obtain $g(2 b)+g(0)=$ $2 g(b)+2 g(b)$, i.e., $g(2 b)=4 g(b)$, contradiction. So $g \notin \operatorname{Quad}(X, Y)$, but by (2) $g \in \operatorname{Hom}_{\perp}(X, Y)$, and g is even, therefore

$$
\text { (e) } \operatorname{Hom}_{\perp}(X, Y) \not \subset \operatorname{Quad}(X, Y) \text {. }
$$

We now turn to the case $\operatorname{dim}_{Z} X \geq 2$ where we shall find situations contrasting with those in Examples 10 and 11.

Lemma 12. If $f, g \in \operatorname{Hom}_{\perp}(X, Y)$, then we have:

$$
\begin{gather*}
f(x)=\sum f\left(p_{j} b_{j}\right) \quad \text { for } x=\sum p_{j} b_{j} \in X . \tag{3}\\
g \text { even; } \quad j, k \in J, j \neq k ; \tag{4}\\
p \in Z \text { even } \Longrightarrow g\left(p b_{j}\right)=2 g\left(\frac{p}{2} b_{j}\right)+2 g\left(\frac{p}{2} b_{k}\right) .
\end{gather*}
$$

Proof. (3): By Lemma 8a), $f(0)=0$, so a zero summand $p_{j} b_{j}$ of $\sum p_{j} b_{j}$ produces a zero summand of $\sum f\left(p_{j} b_{j}\right)$. (3) is a matter of finite sums and is established by induction on the number of nonzero summands starting from Lemma 5a), b), c) and from (*). - (4): $g\left(p b_{j}\right)=g\left[\frac{p}{2}\left(b_{j}+\right.\right.$ $\left.\left.b_{k}\right)+\frac{p}{2}\left(b_{j}-b_{k}\right)\right]={ }_{\mathrm{L} .5 \mathrm{~d}}=g\left[\frac{p}{2}\left(b_{j}+b_{k}\right)\right]+g\left[\frac{p}{2}\left(b_{j}-b_{k}\right)\right]={ }_{(3)}=g\left(\frac{p}{2} b_{j}\right)+$ $g\left(\frac{p}{2} b_{k}\right)+g\left(\frac{p}{2} b_{j}\right)+g\left(\frac{p}{2} b_{k}\right)=2 g\left(\frac{p}{2} b_{j}\right)+2 g\left(\frac{p}{2} b_{k}\right)$.

Theorem 13. If $\operatorname{dim}_{Z} X \geq 2$, then (o) $\operatorname{Hom}_{\perp}(X, Y)=\operatorname{Hom}(X, Y)$.
Proof. i) $\operatorname{Hom}(X, Y) \subset(o) \operatorname{Hom}_{\perp}(X, Y)$ follows from Lemma 8a).
ii) Assume that $h \in(o) \operatorname{Hom}_{\perp}(X, Y)$. By partially using a method in [4], p. 4.74/4.75, we show that

$$
\begin{equation*}
(H, j, p): \quad h\left(p b_{j}\right)=p h\left(b_{j}\right) \quad \text { holds for all } j \in J \text { and all } p \in Z . \tag{5}
\end{equation*}
$$

$p=0$: By Lemma 8a) $h(0)=0$, so $(H, j, 0)$ holds for all $j \in J$.
$p=1:(H, j, 1)$ trivially holds for all $j \in J$.
Let be $n \in N, n \geq 2$, and assume that (H, j, p) holds for all $p \in N^{0}$ such that $p \leq n-1$ and for all $j \in J$. Let be $j \in J$ arbitrary and choose
$k \in J \backslash\{j\}$ arbitrary (notice that $\operatorname{dim}_{Z} X \geq 2$). Then we get

$$
\begin{gather*}
h\left[n b_{j}+(n-2) b_{k}\right]=h\left[(n-1)\left(b_{j}+b_{k}\right)+\left(b_{j}-b_{k}\right)\right] \\
=_{\mathrm{L} .5 \mathrm{~d}}=h\left[(n-1)\left(b_{j}+b_{k}\right)\right]+h\left(b_{j}-b_{k}\right)={ }_{(3)} \tag{6}\\
=h\left[(n-1) b_{j}\right]+h\left[(n-1) b_{k}\right]+h\left(b_{j}\right)-h\left(b_{k}\right) \\
={ }_{(H, j, n-1),(H, k, n-1)}=(n-1) h\left(b_{j}\right)+(n-1) h\left(b_{k}\right)+h\left(b_{j}\right)-h\left(b_{k}\right) \\
=n h\left(b_{j}\right)+(n-2) h\left(b_{k}\right) .
\end{gather*}
$$

On the other hand

$$
\begin{align*}
h\left[n b_{j}+(n-2) b_{k}\right] & ={ }_{(3)}=h\left(n b_{j}\right)+h\left[(n-2) b_{k}\right]={ }_{(H, k, n-2)} \\
& =h\left(n b_{j}\right)+(n-2) h\left(b_{k}\right) . \tag{7}
\end{align*}
$$

From (6) and (7) we obtain $h\left(n b_{j}\right)=n h\left(b_{j}\right)$. Analogously, with j, k interchanged, $h\left(n b_{k}\right)=n h\left(b_{k}\right)$, so (H, j, n) holds for all $n \in N^{0}$ and all $j \in J$, i.e.,

$$
\begin{equation*}
h\left(n b_{j}\right)=n h\left(b_{j}\right)\left(\forall n \in N^{0}, \forall j \in J\right) . \tag{8}
\end{equation*}
$$

Let be $p \in Z, p<0$, and $j \in J$ arbitrary. Then $h\left(p b_{j}\right)=h\left(-(-p) b_{j}\right)=$ $-h\left((-p) b_{j}\right)=_{(8)}=p h\left(b_{j}\right)$. This and (8) imply (5).

Let be $x, z \in X$ arbitrary, say $x=\sum p_{j} b_{j}, z=\sum q_{j} b_{j}$, so $x+z=$ $\sum\left(p_{j}+q_{j}\right)\left(b_{j}\right)$, and we have $h(x+z)={ }_{(3)}=\sum h\left[\left(p_{j}+q_{j}\right) b_{j}\right]={ }_{(5)}=\sum\left(p_{j}+\right.$ $\left.q_{j}\right) h\left(b_{j}\right)=\sum p_{j} h\left(b_{j}\right)+\sum q_{j} h\left(b_{j}\right)={ }_{(5)}=\sum h\left(p_{j} b_{j}\right)+\sum h\left(q_{j} b_{j}\right)={ }_{(3)}=$ $h\left(\sum p_{j} b_{j}\right)+h\left(\sum q_{j} b_{j}\right)=h(x)+h(z)$. Therefore $h \in \operatorname{Hom}(X, Y)$, and (o) $\operatorname{Hom}_{\perp}(X, Y) \subset \operatorname{Hom}(X, Y)$ is established, which completes the proof.

Remark 14. A more explicit form of $h \in \operatorname{Hom}(X, Y)$ is of course

$$
\begin{equation*}
h(x)=\sum p_{j} c_{j} \text { for } x=\sum p_{j} b_{j} \in X \text { and } c_{j}:=h\left(b_{j}\right) \quad(\forall j \in J) . \tag{9}
\end{equation*}
$$

Theorem 15. If $\operatorname{dim}_{Z} X=2$ and the basis $\left(b_{j}\right)_{j \in J}$ is denoted by $\left(b_{1}, b_{2}\right)$, then $g: X \rightarrow Y$ belongs to (e) $\operatorname{Hom}_{\perp}(X, Y)$ if and only if there
exist $a_{1}, a_{2} \in Y$ such that

$$
\begin{align*}
g\left(p_{1} b_{1}+p_{2} b_{2}\right) & =g\left(p_{1} b_{1}\right)+g\left(p_{2} b_{2}\right) & & \left(\forall p_{1}, p_{2} \in Z\right), \tag{10}\\
g\left(p b_{1}\right) & =g\left(p b_{2}\right)=\frac{1}{2} p^{2}\left(a_{1}+a_{2}\right) & & (p \in Z \text { even }), \tag{11}\\
g\left(p b_{1}\right) & =\frac{1}{2}\left(p^{2}+1\right) a_{1}+\frac{1}{2}\left(p^{2}-1\right) a_{2} & & (p \in Z \text { odd }), \tag{12}\\
g\left(p b_{2}\right) & =\frac{1}{2}\left(p^{2}-1\right) a_{1}+\frac{1}{2}\left(p^{2}+1\right) a_{2} & & (p \in Z \text { odd }) . \tag{13}
\end{align*}
$$

Proof. i) Assume that $g \in(e) \operatorname{Hom}_{\perp}(X, Y)$. (10) is implied by (3), and (4) leads to

$$
\begin{equation*}
g\left(p b_{1}\right)=g\left(p b_{2}\right)=2 g\left(\frac{p}{2} b_{1}\right)+2 g\left(\frac{p}{2} b_{2}\right) \quad(p \in Z \text { even }) . \tag{14}
\end{equation*}
$$

We put

$$
\begin{equation*}
a_{1}:=g\left(b_{1}\right), \quad a_{2}:=g\left(b_{2}\right) \tag{15}
\end{equation*}
$$

and prove (11), (12), (13) by induction on p; evenness of g implies that we need only consider $p \in N^{0} . g(0)=0$ (from Lemma 8a)) and (15) guarantee that (11), (12), (13) hold for $p=0, p=1$, respectively.

Let be $p \in N$ odd and assume that (11), (12), (13) hold for $g\left(r b_{1}\right)$, $g\left(s b_{2}\right)$ where $0 \leq r, s \leq p$. Since $p+1$ is even, (14) yields

$$
\begin{equation*}
g\left[(p+1) b_{1}\right]=g\left[(p+1) b_{2}\right]=2 g\left(\frac{p+1}{2} b_{1}\right)+2 g\left(\frac{p+1}{2} b_{2}\right) . \tag{16}
\end{equation*}
$$

From $1 \leq p$ we conclude $\frac{p+1}{2} \leq p$ so that (11), (12), (13) can be applied to the right hand side of (16).

Case 1: $\frac{p+1}{2}$ is even. By (11) for $\frac{p+1}{2}$ we get

$$
\begin{equation*}
g\left(\frac{p+1}{2} b_{1}\right)=g\left(\frac{p+1}{2} b_{2}\right)=\frac{1}{2}\left(\frac{p+1}{2}\right)^{2}\left(a_{1}+a_{2}\right), \tag{17}
\end{equation*}
$$

so $g\left[(p+1) b_{1}\right]=g\left[(p+1) b_{2}\right]={ }_{(16),(17)}=2\left(\frac{p+1}{2}\right)^{2}\left(a_{1}+a_{2}\right)=\frac{1}{2}(p+1)^{2}\left(a_{1}+\right.$ a_{2}), which means that (11) p_{p+1} holds here.

Case 2: $\frac{p+1}{2}$ is odd. By (12), (13) for $\frac{p+1}{2}$ we get

$$
\begin{align*}
& g\left(\frac{p+1}{2} b_{1}\right)=\frac{1}{2}\left[\left(\frac{p+1}{2}\right)^{2}+1\right] a_{1}+\frac{1}{2}\left[\left(\frac{p+1}{2}\right)^{2}-1\right] a_{2}, \tag{18}\\
& g\left(\frac{p+1}{2} b_{2}\right)=\frac{1}{2}\left[\left(\frac{p+1}{2}\right)^{2}-1\right] a_{1}+\frac{1}{2}\left[\left(\frac{p+1}{2}\right)^{2}+1\right] a_{2} . \tag{19}
\end{align*}
$$

So $g\left[(p+1) b_{1}\right]=g\left[(p+1) b_{2}\right]={ }_{(16),(18),(19)}=\left[\left(\frac{p+1}{2}\right)^{2}+1\right] a_{1}+\left[\left(\frac{p+1}{2}\right)^{2}-1\right]$. $a_{2}+\left[\left(\frac{p+1}{2}\right)^{2}-1\right] a_{1}+\left[\left(\frac{p+1}{2}\right)^{2}+1\right] a_{2}=2\left(\frac{p+1}{2}\right)^{2} a_{1}+2\left(\frac{p+1}{2}\right)^{2} a_{2}=\frac{1}{2}(p+1)^{2}$. $\left(a_{1}+a_{2}\right)$, and (11) $)_{p+1}$ holds again. In the total, (11) $)_{p+1}$ holds in every case.

We now turn to $(12)_{p+2},(13)_{p+2}$; notice that $p+2$ is odd. By (3) and evenness of g we obtain

$$
\begin{align*}
& g\left[(p+1) b_{1}+b_{2}\right]=g\left[(p+1) b_{1}\right]+g\left(b_{2}\right), \\
& g\left[b_{1}-(p+1) b_{2}\right]=g\left(b_{1}\right)+g\left[(p+1) b_{2}\right] . \tag{20}
\end{align*}
$$

Taking into account $(p+1) b_{1}+b_{2} \perp b_{1}-(p+1) b_{2}$, we infer $g\left[(p+2) b_{1}\right]+$ $g\left(p b_{2}\right)={ }_{(3)}=g\left[(p+2) b_{1}-p b_{2}\right]=g\left[(p+1) b_{1}+b_{2}+b_{1}-(p+1) b_{2}\right]=_{(*)}=g[(p+$ 1) $\left.b_{1}+b_{2}\right]+g\left[b_{1}-(p+1) b_{2}\right]={ }_{(20)}=g\left[(p+1) b_{1}\right]+g\left(b_{2}\right)+g\left(b_{1}\right)+g\left[(p+1) b_{2}\right]$, i.e., by $(13)_{p},(15),(11)_{p+1}: g\left[(p+2) b_{1}\right]+\frac{1}{2}\left(p^{2}-1\right) a_{1}+\frac{1}{2}\left(p^{2}+1\right) a_{2}=$ $(p+1)^{2}\left(a_{1}+a_{2}\right)+a_{1}+a_{2}$, i.e., $g\left[(p+2) b_{1}\right]=\left[(p+1)^{2}+1-\frac{1}{2}\left(p^{2}-1\right)\right] a_{1}+$ $\left[(p+1)^{2}+1-\frac{1}{2}\left(p^{2}+1\right)\right] a_{2}=\frac{1}{2}\left[(p+2)^{2}+1\right] a_{1}+\frac{1}{2}\left[(p+2)^{2}-1\right] a_{2}$, which means that (12) $)_{p+2}$ holds. $(13)_{p+2}$ is obtained in a similar way. Therefore, (10), (11), (12), (13) do hold.
ii) Conversely, assume that $a_{1}, a_{2} \in Y$ and $g: X \rightarrow Y$ are such that (10), (11), (12), (13) hold. Then g obviously is even. $p=1$ in (12), (13) gives

$$
\begin{equation*}
g\left(b_{1}\right)=a_{1}, \quad g\left(b_{2}\right)=a_{2} . \tag{21}
\end{equation*}
$$

Let be $x, z \in X$ arbitrary, but fixed for the moment, $x \perp z$, say $x=$ $p_{1} b_{1}+p_{2} b_{2},: z=q_{1} b_{1}+q_{2} b_{2}$. By Definition 4

$$
\begin{equation*}
p_{1} q_{1}+p_{2} q_{2}=\langle x, z\rangle=0, \tag{22}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left(p_{1}+q_{1}\right)^{2}+\left(p_{2}+q_{2}\right)^{2}=p_{1}^{2}+q_{1}^{2}+p_{2}^{2}+q_{2}^{2} . \tag{23}
\end{equation*}
$$

By (22) the following cases of parity constellations for $p_{1}, q_{1}, p_{2}, q_{2}$ are excluded: Three numbers odd, one number even (4 cases); p_{1} and q_{1} odd, p_{2} and q_{2} even, or conversely (2 cases). On the basis of (23), we find by inspection in the ten remaining cases that always

$$
g\left[\left(p_{1}+q_{1}\right) b_{1}\right]+g\left[\left(p_{2}+q_{2}\right) b_{2}\right]=g\left(p_{1} b_{1}\right)+g\left(p_{2} b_{2}\right)+g\left(q_{1} b_{1}\right)+g\left(q_{2} b_{2}\right)
$$

is valid, so by (10) $g(x+z)=g(x)+g(z)$. As $x, z \in X$ with $x \perp z$ were arbitrary, we got $g \in \operatorname{Hom}_{\perp}(X, Y)$, and in the total $g \in(\mathrm{e}) \operatorname{Hom}_{\perp}(X, Y)$.

Remark 16. a) The procedure in part i) of the proof of Theorem 15 is different from that in the vector space case. There we have the conclusion

$$
\begin{equation*}
g \in(\mathrm{e}) \operatorname{Hom}_{\perp}(X, Y) ; x, z \in X ; x+z \perp x-z \Longrightarrow g(x)=g(z) \tag{24}
\end{equation*}
$$

([10], p. 39, Theorem 6, iii). Here (24) is not available in general since the choice $a_{1} \neq a_{2}$, possible by Theorem 15 if Y allows it, leads to $g\left(b_{1}\right) \neq g\left(b_{2}\right)$ although $b_{1}+b_{2} \perp b_{1}-b_{2}($ Lemma 5 d$\left.)\right)$. On the other hand, (11) is a weak substitute of (24), but (11) is restricted to p even, and the difference has its origin in the missing 2 -divisibility of the free Z-module X.
b) In the vector space case we have (e) $\operatorname{Hom}_{\perp}(X, Y) \subset \operatorname{Quad}(X, Y)$ for X at least 2-dimensional ([10], p. 39, Theorem 6). In the context of the present Theorem 15, a mapping $g \in(\mathrm{e}) \operatorname{Hom}_{\perp}(X, Y)$ is quadratic if and only if $2 a_{1}=2 a_{2}$, i.e., if and only if $\omega\left(a_{1}\right)=\omega\left(a_{2}\right)$; if ω is injective, this is equivalent to $a_{1}=a_{2}$. In fact: i) Let $g \in \operatorname{Quad}(X, Y)$. By (11), $g(0)=0$, and $x=z$ in $(J v N)$ gives $g(2 x)=4 g(x)(\forall x \in X)$. So $2\left(a_{1}+a_{2}\right)={ }_{(11)}=$ $g\left(2 b_{1}\right)=4 g\left(b_{1}\right)={ }_{(12)}=4 a_{1}$, i.e., $2 a_{2}=2 a_{1}$. - ii) Let be $2 a_{1}=2 a_{2}$. If p is even, then $4 \mid p^{2}$, so $\frac{1}{2} p^{2}\left(a_{1}+a_{2}\right)=\frac{1}{4} p^{2}\left(2 a_{1}+2 a_{2}\right)=p^{2} a_{1}=p^{2} a_{2}$. If p is odd, then $4 \mid\left(p^{2}-1\right)$, and $\frac{1}{2}\left(p^{2}+1\right) a_{1}+\frac{1}{2}\left(p^{2}-1\right) a_{2}=\frac{1}{2}\left(p^{2}-1\right)\left(a_{1}+\right.$ $\left.a_{2}\right)+a_{1}=\frac{1}{4}\left(p^{2}-1\right)\left(2 a_{1}+2 a_{2}\right)+a_{1}=\left(p^{2}-1\right) a_{1}+a_{1}=p^{2} a_{1}$, and in an analogous way we obtain $\frac{1}{2}\left(p^{2}-1\right) a_{1}+\frac{1}{2}\left(p^{2}+1\right) a_{2}=p^{2} a_{2}$. So by (10), (11), (12); (13) $g\left(p_{1} b_{1}+p_{2} b_{2}\right)=g\left(p_{1} b_{1}\right)+g\left(p_{2} b_{2}\right)=p_{1}^{2} a_{1}+p_{2}^{2} a_{2}\left(\forall p_{1}, p_{2} \in Z\right)$, consequently $g \in \operatorname{Quad}(X, Y)$.
c) Part b) shows how to construct non-quadratic $g \in(e) \operatorname{Hom}_{\perp}\left(Z^{2}, Y\right)$. Such a g cannot be extended to a $\widehat{g} \in(e) \operatorname{Hom}_{\perp}\left(R^{2}, Y\right), R^{2}$ being equipped with the standard inner product, for g would have to be quadratic as a restriction of a quadratic mapping \widehat{g}.
d) It turns out that Theorem 15 describes an exceptional case because we have:

Theorem 17. If $\operatorname{dim}_{Z} X \geq 3$, then $g: X \rightarrow Y$ belongs to (e) $\operatorname{Hom}_{\perp}(X, Y)$ if and only if there exist elements $a_{j} \in Y(j \in J)$ with $2 a_{j}=2 a_{k}$ for all $j, k \in J$ and $g(x)=\sum p_{j}^{2} a_{j}$ for all $x=\sum p_{j} b_{j} \in X$.

Proof. i) Let be $g \in(e) \operatorname{Hom}_{\perp}(X, Y)$. Put

$$
\begin{equation*}
a_{j}:=g\left(b_{j}\right) \quad(\forall j \in J) . \tag{25}
\end{equation*}
$$

Let be $j, k \in J$ with $j \neq k$. Since $\operatorname{dim}_{Z} X \geq 3$, there exists $l \in J$ such that $l \neq j, l \neq k$. By (4), $g\left(2 b_{l}\right)=2 g\left(b_{l}\right)+2 g\left(b_{j}\right)$ as well as $g\left(2 b_{l}\right)=$ $2 g\left(b_{l}\right)+2 g\left(b_{k}\right)$, so by (25)

$$
\begin{equation*}
2 a_{j}=2 g\left(b_{j}\right)=2 g\left(b_{k}\right)=2 a_{k}, \tag{26}
\end{equation*}
$$

and this trivially holds also for $j=k$. Now we show by induction on p that

$$
\begin{equation*}
(Q, j, p): \quad g\left(p b_{j}\right)=p^{2} a_{j} \text { holds for all } j \in J \text { and all } p \in Z \tag{27}
\end{equation*}
$$

Evenness of g implies that we need only consider $p \in N^{0} . g(0)=0$ (ensured by Lemma 8a)) and (25) guarantee that ($Q, j, 0$) and ($Q, j, 1$) hold for all $j \in J$.

Let be $n \in N, n \geq 2$, and assume that (Q, j, p) holds for all $p \in N^{0}$ such that $p \leq n-1$ and for all $j \in J$. Let be $j, k \in J, j \neq k$, arbitrary.

$$
\begin{gather*}
g\left[n b_{j}+(n-2) b_{k}\right]=g\left[(n-1)\left(b_{j}+b_{k}\right)+\left(b_{j}-b_{k}\right)\right]==_{\mathrm{L} .5 \mathrm{~d}} \\
=g\left[(n-1)\left(b_{j}+b_{k}\right)\right]+g\left(b_{j}-b_{k}\right)={ }_{(3)} \tag{28}\\
=g\left[(n-1) b_{j}\right]+g\left[(n-1) b_{k}\right]+g\left(b_{j}\right)+g\left(b_{k}\right) \\
={ }_{(Q, j, n-1),(Q, k, n-1)}=(n-1)^{2} g\left(b_{j}\right)+(n-1)^{2} g\left(b_{k}\right)+g\left(b_{j}\right)+g\left(b_{k}\right)=_{(25)} \\
\quad=\left[(n-1)^{2}+1\right]\left(a_{j}+a_{k}\right) .
\end{gather*}
$$

On the other hand,

$$
\begin{align*}
& g\left[n b_{j}+(n-2) b_{k}\right]={ }_{(3)}=g\left(n b_{j}\right)+g\left[(n-2) b_{k}\right]={ }_{(Q, k, n-2)} \\
& \quad=g\left(n b_{j}\right)+(n-2)^{2} g\left(b_{k}\right)=_{(25)}=g\left(n b_{j}\right)+(n-2)^{2} a_{k} . \tag{29}
\end{align*}
$$

From (28) and (29) we obtain $g\left(n b_{j}\right)=\left[(n-1)^{2}+1\right] a_{j}+\left[(n-1)^{2}+1-\right.$ $\left.(n-2)^{2}\right] a_{k}=\left(n^{2}-2 n+2\right) a_{j}+(2 n-2) a_{k}=_{(26)}=\left(n^{2}-2 n+2\right) a_{j}+$ $(2 n-2) a_{j}=n^{2} a_{j}$. Analogously, with j, k interchanged, we obtain also $g\left(n b_{k}\right)=n^{2} a_{k}$. So (Q, j, n) holds for all $j \in J$, and by induction, (27) is established.

If $x=\sum p_{j} b_{j} \in X$ is arbitrary, then $g(x)={ }_{(3)}=\sum g\left(p_{j} b_{j}\right)=_{(27)}=$ $\sum p_{j}^{2} a_{j}$, i.e., g has the form required.
ii) Assume that there exist $a_{j} \in Y(j \in J)$ such that $2 a_{j}=2 a_{k}(\forall j, k \in J)$ and $g(x)=\sum p_{j}^{2} a_{j}$ for all $x=\sum p_{j} b_{j} \in X$. Let be $x, z \in X, x \perp z$, say $x=\sum p_{j} b_{j}, z=\sum q_{j} b_{j}$, so $x+z=\sum\left(p_{j}+q_{j}\right) b_{j}$. By Definition 4

$$
\begin{equation*}
\sum p_{j} q_{j}=\langle x, z\rangle=0 \tag{30}
\end{equation*}
$$

Let d be the common value of all elements $2 a_{j}(j \in J)$. Then $g(x+z)=$ $\sum\left(p_{j}+q_{j}\right)^{2} a_{j}=\sum\left(p_{j}^{2}+2 p_{j} q_{j}+q_{j}^{2}\right) a_{j}=\sum p_{j}^{2} a_{j}+\sum p_{j} q_{j} \cdot 2 a_{j}+\sum q_{j}^{2} a_{j}=$ $g(x)+\sum p_{j} q_{j} \cdot d+g(z)={ }_{(30)}=g(x)+g(z)$. So $g \in \operatorname{Hom}_{\perp}(X, Y)$, and obviously g is even.

Remark 18. a) The mappings $g: X \rightarrow Y$ of the form $g(x)=\sum p_{j}^{2} a_{j}$ for all $x=\sum p_{j} b_{j} \in X$, as occurring in Theorem 17, are quadratic no matter whether $2 a_{j}=2 a_{k}(\forall j, k \in J)$ or not. In fact: If also $z=\sum q_{j} b_{j} \in$ X, then $g(x+z)+g(x-z)=\sum\left(p_{j}+q_{j}\right)^{2} a_{j}+\sum\left(p_{j}-q_{j}\right)^{2} a_{j}=\sum\left[\left(p_{j}+q_{j}\right)^{2}+\right.$ $\left.\left(p_{j}-q_{j}\right)^{2}\right] a_{j}=\sum\left(2 p_{j}^{2}+2 q_{j}^{2}\right) a_{j}=2 \sum p_{j}^{2} a_{j}+2 \sum q_{j}^{2} a_{j}=2 g(x)+2 g(z)$.
b) A quadratic mapping $g: X \rightarrow Z$ satisfying $2 g\left(b_{j}\right)=2 g\left(b_{k}\right)(\forall j, k \in$ $J)$ need not be in (e) $\operatorname{Hom}_{\perp}(X, Z)$. This shows that the quadratic mappings occurring in Theorem 17 form a very special class in $\operatorname{Quad}(X, Y)$ In fact: $g(x):=\left(\sum p_{j}\right)^{2}$ for $x=\sum p_{j} b_{j} \in X$. For $x, z \in X$ we have $g(x+z)+g(x-z)=\left(\sum\left(p_{j}+q_{j}\right)\right)^{2}+\left(\sum\left(p_{j}-q_{j}\right)\right)^{2}=\left(\sum p_{j}+\sum q_{j}\right)^{2}+\left(\sum p_{j}-\right.$ $\left.\sum q_{j}\right)^{2}=2\left(\sum p_{j}\right)^{2}+2\left(\sum q_{j}\right)^{2}=2 g(x)+2 g(z)$, i.e., $g \in \operatorname{Quad}(X, Z)$. Furthermore $g\left(b_{j}\right)=1(\forall j \in J)$. If $\operatorname{dim}_{Z} X \geq 2$ and $b_{j} \perp b_{k}$, then $g\left(b_{j}+b_{k}\right)=2^{2} \neq 2=g\left(b_{j}\right)+g\left(b_{k}\right)$, i.e., $g \notin(\mathrm{e}) \operatorname{Hom}_{\perp}(X, Z)$.

Remark 19. Theorems 13 and 17 and Remark 18a) show that for sufficiently large dimension of X,
(o) $\operatorname{Hom}_{\perp}(X, Y)=\operatorname{Hom}(X, Y)$,
(e) $\operatorname{Hom}_{\perp}(X, Y) \subset \operatorname{Quad}(X, Y)$,
and Remark 18b) shows that the inclusion in (32) may be strict. Examples 10 and 11 demonstrate that (31), (32) do not hold for $\operatorname{dim}_{Z} X=1$. Theorem 15 exhibits the exceptional case for (e) $\operatorname{Hom}_{\perp}(X, Y)$ when $\operatorname{dim}_{Z} X=2$ where (32) still can be violated for suitable groups Y. The proof of Theorem 17 shows in what way the hypothesis $\operatorname{dim}_{Z} X \geq 3$ enforces the condition (26) $2 a_{j}=2 a_{k}(\forall j, k \in J)$ and then the quadratic character of the mapping g considered there (for the 2-dimensional situation cf. Remark 16b).

There are many situations in connection with inner product spaces for which dimension 2 is exceptional. The most prominent one might be the characterization of inner product spaces among normed spaces where certain conditions are effective only for $\operatorname{dim} X \geq 3$ ([2], p. 97-156). For a much simpler question concerning a characterization of the inner product on real and complex vector spaces cf. [9].

References

[1] J. Aczél and J. Dhombres, Functional equations in several variables, Encyclopedia of Mathematics and its Applications, vol. 31, University Press, Cambridge, 1989.
[2] D. Amir, Characterizations of inner product spaces, Operator Theory: Advances and Applications, vol. 20, Birkhäuser, Basel-Boston-Stuttgart, 1986.
[3] N. Bourbaki, Eléments de Mathématique, Livre II:, Algèbre, Chapitre 2, Hermann, Paris, 1962.
[4] J. Dhombres, Some aspects of functional equations, Chulalongkorn University Press, Bankok, 1979.
[5] B. Heijnen and M. J. Goovaerts, Additivity and premium calculation principles, Blätter der Deutschen Gesellschaft für Versich. math. 17 (1986), 217-223.
[6] M. E. Kuczma, Problem 10381, Amer. Math. Monthly 101 (1994), 363.
[7] L. Paganoni and J. Rätz, Conditional functional equations and orthogonal additivity, Aequationes Math. 50 (1995), 135-142.
[8] A. Pinsker, Sur une fonctionnelle dans l'espace de Hilbert, C. R. Acad. Sci. URSS N. S. 20 (1938), 411-414.
[9] J. RÄtz, Zur Charakterisierung des Skalarproduktes, Elemente Math. 36 (1981), 94-97.

110 Jürg Rätz : Orthogonally additive mappings on free inner product Z-modules
[10] J. RÄTz, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.
[11] J. RÄтz, On orthogonally additive mappings, II, Publ. Math. Debrecen 35 (1988), 241-249.
[12] J. RÄtz, On orthogonally additive mappings, III, Abh. Math. Sem. Univ. Hamburg 59 (1989), 23-33.
[13] J. RäTz and Gy. Szabó, On orthogonally additive mappings, IV, Aequationes Math. 38 (1989), 73-85.
[14] K. Baron and J. RäTz, On orthogonally additive mappings on inner product spaces, Bull. Polish Acad. Sci. Math. 43 (1995), 187-189.

JÜRG RÄTZ
MATHEMATISCHES INSTITUT DER UNIVERSITÄT BERN
SIDLERSTRASSE 5
CH-3012 BERN
SCHWEIZ
(Received May 14, 1996; revised March 10, 1997)

