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Abstract: We consider a first order autoregressive (4R) vector process which has stationary
behavior and fulfils equation (1). The least squares estimate of the matrix parameter Q is investigated
when the observation interval, n, tends to infinity. It is proved that the approximate distribution
of the estimate depends on Q and the functional @ in (4) can be approximated by the help of
continuous time Gauss—Markov process (6°).
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1. Results and comparisons

Let us consider an autoregressive vector model

(N SO =05(t—-D+e(n), t=12,..,n,
with
E¢() = Ee(1) = 0, §(0) =0.
Here, £(7) is the observation at time ¢, g(¢) is the random disturbance and the matrix

Q is unknown. We shall assume that &(¢) is a martingale difference sequence with
respect to the o-fields F, FSF,,, such that, Ya=>0, in probability

2) = S ECWO" e lyuomswrdF) =0, a5 1o,
@) = ZEGO OIE) ~ 1 a5 nese.

The unknown parameter Q is customarily estimated by its least squares estimate

@) 0.= ZE0EE-D(Z LOEO)™

If the (t)’s are normally distributed, 0, is the maximum likelihood estimator and
&(1) is an elementary Gaussian process (see [2]). The stochastic differential equation
related to (1) is

(5) di(t) = AL(dt+dw(), 0=t=T, £(0)=0,
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where Q=e*4, and the least squares estimate of A is given by
T T
©) A= doeo]l[imeon)™.
0 0

Note that every process ¢(f), 0=t=T, satisfying the equation
di(1) = A{(D) dt+do(r), (1)is a Wiener process, ¢£(0) =

can be transformed to the form

©) dn(s) = An(s) ds+da(s), 0=s=1, £0)=0
by

SV oy me P ks, B B
Y 1) =(ONT, A=AT 5=, 860)=T2.

So in the following we may assume that 7=1 and the observation interval is
0=t=1.

The distributions of the statistics f dé(r)&*(r), f C(r)ﬁ(l) dt are given
(see [7]) and they depend on A. If A=0 (1 e. O0=I) wc get (compare with [3])

® A= ([ doe)(f eer®d)™.

The main purpose of this paper is to prove that the approximate distribution of 0,,
when n-eo, depends on Q (or on A), i.e., on a family of distributions. Such a
phenomenon can be seen in the binomial case when (x—np)(np(1—p))~"/* has a
Poisson approximation with parameter / if np~J, and a normal approximation
if p is fixed and n-—<e, respectively.

When Q is fixed and |Q—AI|=0 has solutions 4; with |4;]=1 then it is well known
that (see [1], [2], [6], [8]).

Ciparr 0 ) A ¢ (A |
e 0 1(0) 0
Vn(Q,—Q) ~ N(0, B-1(0)), B~'(0) = T 3 ol
{ o 0. oiB 1(0)
or
(10) 0,~0)( 2 &-18-0)"* ~ N, D),
in distribution, where the steady state covariance of ¢(¢)B(0) is the solution of
equation ’
(11) B(0) = QB(0)Q* + 1,

(or AB(0)+B(0)A*=—1I). This was first proved by MANN and WALD [8]. We get
the Yule—Walker equatlons ([1], [6]). But this convergence is not uniform in |4;]<1
(it depends on B(0), i.e. on Q). In recent years, there has been considerable interest
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in the asymptotic properties of @, when the 4; are close or equal to one (see [3],
[10], [12]). The simplest case is Q=/ (or A=0). In the one-dimensional case
White proved (see [3], [13]) that if Q=1 then

" 1
(3 &)1~ 5 @M= [ 00
where ;

0, = 'g": érél‘—l/';; g—l-

This is a special case of (6). Our principal result is the following.
Theorem 1. Let Q be a matrix with characteristic roots |2;|=1. For t=1,2,...,n
suppose <(t) satisfies (1), with £(0)=0; and &(1) satisfies (2), (3). Then, as n—+ e,

n 1 1
(12) (0,=0O)( Z (==Y~ [ (da@E ®)( [ ¢0E M di)™" =
= 0 o

1 1 1
=[[ @& -4, [ @& md]( [ e @ar)™,

in distribution, where ¢(1) fulfils (6") and w(t) is a standard Brownian motion.

Remark. If Ee(t)e*(1)=B, the least squares estimate of Q is given by

(13) 0.= (3 0B (-1)(Z LOBEO)
and R
(14)

n 1 1
(0,—0)( 21 Ea—NB g (=12~ [ (da()B & @) ( [ E(B & (1)dr) ™™,
Te 0 0

Proor. We follow the method of [1] which was used for Gaussian processes.
Minimizing in Q the following expression

2 (E0-08-D)EW—-0E— 1) = 3 0" (®)

=

we get

(15) 'é(é(t)-—Qg(t—l))_g_*(z—l) =0,

Further, from (1) (multiplying by £*(r—1) and summing up)

(16) 3 (€0-06a—1D)E (=) = 3 e®E (D).
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The difference of (15) and (16) and gives
Q. Q)[Zé(f—l)i*(f—l)] e(f)tf (t-1).

Using transformation (7) for é(r) and &(1) one gets a discrete process in 0=s=1.
In view of the central limit theorem for martingales ([4], [5], [12]) under conditions

), (3
e k
— Jet)~w(s), 0=s=1, ——s,
Vn i .
and, ([11]),

2 () (1—1)~ [ do()E ().

Sil-

On the other hand if n--<c equation (1) tends to (6”) and £(¢) tends to the solu-

tion of (6”) with a standard Wiener process.
It is known (see [2]) that the only solution of (6") is a Gauss—Markov type
process and

3 Gu-DE -1~ [ EOF O ds
with a Gauss—Markov process ¢(#). It is known (see [7], [9], [2]), that

1
Vr(4y, C) = Egyexp{ [ £*()CE() dr}

has the form )
Yr(4,y, C) = e=TroceD . |I-2DF(1)|717,

here the symmetric matrix D and 4 satisfy equations
DAy+A;—2DD =C,

2D = Ao"‘a,
and I'(t) is defined by

I'(f) = e*I'(0)ed** + f e .e*sds, I'(0)=E(£(0)£*(0)).

D and I(t) are hypermatrices

5=(y ) o

1
The distribution function of f £ (1)CE(r) dt is calculated and tabulated only in

[ ro) r(ye:
e*r©) I

o
the one dimensional case (see [2]).
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