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Abstract. In this paper, we consider the asymptotic behaviour and structure of solutions of
a delay differencial equation of the following form:

(%) (1) = p(t) [ax(t)— [ x()dg(s—1)], t=0,
t=1

where p(¢) is a non-negative, continuous function on [0, =), a is a positive constant, g(¢) is a
non-decreasing function of bounded variation on [-1,0] and

[ &) = a.

-1

We obtain results which, among others, indicate that under suitable hypotheses the asymptotic
forms of all unbounded solutions of equation (%), for large 7, have the same dominant term up to
linear dependence.

§ 1. Introduction

In [1], ATkINSON and ZHANG discuss the asymptotic behaviour and structure
of solutions of the linear delay differential equation

(1.1) x(0)=p@Ox(@®)—x@-1)], t=0,

where p(f) is a continuous function on [0, =), and obtain the following result.

t+1

Theorem A. If p(1)=0 and f p(s)ds=1, then any solution x(t) of equa-
tion (1.1) can be expressed in the form
(1.2) x(1) = coXo()+X(1),

where ¢, is a constant, x,(t) is some fixed unbounded solution, and %(t) is a bounded
solution.

In [2], this result was extended to a periodic equation. In this paper, we show
that under suitable hypotheses the representation (1.2) is valid for the more general



16 A. Borls

equation
t

(1.3) 2() =p@)[ax()— [ x(s)dg(s—1)], 1=0,

=1

where p(f) is a non-negative, continuous function on [0, <), a is a positive con-
stant, g(¢) is a non-decreasing function of bounded variation on [—1, 0] and

0
f dg(u) = a.
= |

§ 2. The main result

Before stating the main result of this paper, we introduce some definitions,
notations and lemmas.

Let C*[a, b] denote the space of real-valued functions with continuous deriv-
ative of order k on [a, b]. If k=0 and [a, b]=[-1, 0], then we use the notation
C=C[-1,0]. In addition, we denote by V[—1,0] the space of real-valued func-
tions of bounded variation on [—1, 0].

Definition 2.1. The function x(r) is called a solution of equation (1.3) if
x()EC[—1, <), x(1)EC[0, =) and x(f) satisfies equation (1.3) for 7=0. For
given ¢(1)€C, the function x(¢) is called a solution of equation (1.3) corresponding
to the initial function ¢@(¢) if x(¢) is a solution of equation (1.3) and x(3)=¢(9)
for 9¢[—1, 0].

It is known [3, Chapter 2] that if p(+)€C[0, =), g()eV[-1,0] and o@(1)€C,
then the following conclusions follow for the solution x(¢) of equation (1.3) corre-
sponding to the initial function ¢(t):

(i) x(r) exists and is unique for #=0;

(i1) the derivative of x(7) is continuous for =0.

We now state the main result of this paper.

Theorem. Assume that the following conditions are satisfied:
(2.1) g(tr) is non-decreasing, continuous from the left on [—1, 0];
(22) g(-1)=0, g(0)=a=>0;

(23) p(NeC[0,=), p()=0, t=0;

(2.4) fp(s)g(s—r) ds>0, 0<t=1;

(2.5) 71 p(s)g(t—s)ds =0, t=0;

+1

26) [ p()g(t—s)ds=1, t=T,=0.

t
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Then, any solution x(t) of equation (1.3) which corresponds to the initial function
@(t)EC can be written in the form

2.7 x(1) = coxo (1) +X (1),

where c, is a constant, x,(t) is some fixed unbounded solution of equation (1.3), and
X(t) is a bounded solution of equation (1.3). ¢, and %(t) depend on the initial func-
tion @(1).

Remark 2.1. Ifs lir{lwg(s)—g(— 1)=a=1 and g(r)=‘_.li_r}1+og(s) for t€(—1, 0],

then equation (1.3) coincides with equation (1.1). In this case, (2.1)—(2.6) are sat-
3 t+1

isfied provided p(1)=0 for r=0, [p(s)ds=0 for O<t=1, [ p(s)ds=>0 for
0

t
t+1

t=0, and f p(s)ds=1 for t=T,=0. Therefore, the Theorem is a generaliza-

]
tion of Theorem A.

For simplicity, the proof of the Theorem is reduced to lemmas. Some of them
can be verified easily, so their proofs are omitted. Further, unless otherwise stated,
we assume that conditions (2.1)—(2.6) of the Theorem are satisfied.

In the proofs, instead of equation (1.3) two equations are used both of which
are equivalent to (1.3). This fact is formulated as follows:

Lemma 2.1. If @(1)€C, then equation (1.3) is equivalent to the equation

0
2.8) () =p@0) [ xO-x(+uw)dg@), 1=0,
and, for t=1, to e
(2.9) () =p@) [ x()g(s—0ds, t=1.

ProoF. Introducing the notation u=s—1¢, we get

[ x@)dg(s—1) = [ x(t+w) dg(u).

t—=1 -1

In addition, on the basis of (2.2), we can write

0

ax(t) = f x(1) dg(u).
-1
By using these equalities, we have

t

L]
ax()— [ x(s)dg(s—1) = [ [x()—x(t+u)] dg(u),
-1

t—1

i.e. the first part of the lemma is proved.

2D
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Because of x(7)€C'[0, =), the previous equality can be continued for =1
as follows:

[ xO-x(+ildg@) = [ [ s)dsdg = [ %) [ deCu)ds

-1 14w =1

From this, using (2.2), we get the second part of the assertion of the lemma.

From a technical point of view, it seems to be practical to introduce a notation
for the second factor of the right side of equations (2.8) and (2.9):

0
(2.10) F) = [ x@)-x(t+w)]dgw), 1=0,
and o
(2.11) F()= [ x(s)g(s—0ds, t=1.
-1

If the initial function is continuous, then F(1)€C[0, =).

The first step of our considerations which lead to the assertion of the Theorem
is the proof of the existence of an unbounded solution x,(f). First of all, it can be
shown that if the initial function of the solution x(¢) satisfies a suitable condition,
then x(1) is strictly monotone in a sense on [0, =). For simplicity, we write f(t) /
(or ) if the function f(¢) is monotonically increasing (or decreasing).

Lemma 2.2. Let x(t) be a solution of equation (1.3) corresponding to the initial
Sfunction @(t)€C. In this case, if

IIA

(2.12) [ le()—o@)]dg@w),” (\), 0, —1=1=0,

then
0
[ [x()—x(t+u)] dg(u) >0 (<0), 0=1=<+ee,
-1

Proor. We prove the assertion for the positive case. (The other case can be
proved similarly.)

By way of introduction, we note that (2.12) is equivalent to the following two
conditions:

0
(2.13) [ [0 (0)— ()] dg(w) >0,
-1
(2.19) o(/, —r=t=0,
where
(2.15) r = inf {s€[0, 1]|g(—1) = g(—s) = O}

By the conditions (2.1) and (2.2), we have re(0, 1].
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To verify the equivalence, suppose (2.13) and (2.14) hold and let —1=f<
<1,=0. Then

[To(w—-p@ldgt)— [ lo(t)—ow)]dg(u) =
-] =1

= [To(t)—p@)de@)+lp(t) -] [ dg@) =0,
1 -1

while satisfaction of the condition “#™ is ensured by (2.13).

Conversely, if (2.12) is true, then (2.13) holds because of the continuity of the
integral function. Suppose there exist —1<i,<i,=0 such that ¢(i,)=¢(i,) and
g(i,)=0. Define the numbers ¢,, 1,€[7,, 7] as follows:

t, = max {t€[f,, Lllo(1) = max @)},
ty = min {t€[t,, Bllp(1) = min @(9)}.

Then, t,<t, and ¢@(1)=¢(t)=¢(t,) for t,<t<t,. However,

0= [lo(t)—p@]dg)— [ lo(t)—¢(w)]dg() =
-1 -1

f & " dg(u) <0,

-1

= [ [o(t)— 0] dg()+[p(t) (1)

since the absolute value of the first integrand is less than the absolute value of the
quotient of the second integral, except at the point f,, and it follows from the as-
sumption that g(#,)=0. Thus, we have reached a contradiction.

We next turn to the proof of the assertion. By using the notation (2.10), it
can be formulated in such a way that if (2.12) (or (2.13) and (2.14)) holds, then

F(1)=0, t=0.

First of all, it may be noted that, because of (2.13), F(0)=0 is satisfied. Sup-
pose there exists a point #,=0 such that F(#,)=0, and let

to = lllf{fl - OIF(II) = 0}.
It is clear that 7,=>0 and F(#,)=0 since F(f) is continuous.
If t,=1, then, using (2.11) and (2.9), we have
To To
0=F(t)= [x()gs—t)ds= [ F(s)p(s)g(s—1o)ds.
l.—l lo—l
Hence, according to the assumptions on the functions p(f) and g(7), we get
(2.16) p(s)g(s—1) =0, s€[ty—1, 1],

because the integrand is non-negative. However, considering the definition (2.15),

2%
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the inequality
t+1 t+r

[ pe)glt—s)ds= [ p(s)g(t—s)ds=>0, t=0,

follows from (2.5), so we have

t+r
f p(s)ds =0, t=0.

T

Then, we can deduce from this and (2.15) that

ftP(s)g(S—f)dS = fp(S)g(s—r)ds sl 2w 1

t=1

Thus, the inequality
fo

[ p(©)g(s—1)ds >0

-1
holds, which contradicts (2.16).
If 7,<1, then, making use of (2.10), we have
0 —to

0=F(t) = [ [x(t)—x(to+w]dgw) = [ [x(0)—x(to+u)] dg(u)+

—% -1

+ [ () —x@)dg()+ [ [x(t)—x(to+1)] dga.
-1

-ty
Because of x(1)€C![0, =), the sum of the second and third terms is equivalent to

-4, I 0 o

i ; foi(s)dsdg(u)+ [ [ %(s)dsdg(u).

-y B =ty lg+u
Reversing the order of integration, we can derive the equality

1

[3) [ dgtuyds+ [ 5(s)

=1, T,

[ dg@uyds = [ 5(s) g(s—15) ds.

—I 0

We can summarize the above results as follows:

0= jzoltp(ﬂ)—fp(fﬁu)] dg(u)+ an(S)p(S)g(s—ro)dS-
-1 0

Since the integrands are non-negative, both integrals are equal to zero. How-
ever, in this case we get
p(.f)g(s— ‘0) = Os SE[O! l‘Cl]s
which contradicts (2.4).
This completes the proof of the lemma.
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By using (2.8)—(2.11) and (2.3), from the above assertion we obtain the fol-
lowing:

Corollary 2.1. Under the assumptions of Lemma 2.2,
@) x()=0(=0) for t=0;

(i) [ x(s)ds=>0(<0) for t=1.

t—1
We can now prove the result which guarantees the existence of an unbounded
solution.

Lemma 2.3. Let x(t) be a solution of equation (1.3) corresponding to the initial
Sfunction @(t)€C. In this case, if (2.12) holds, then

x(f) > +oo(—) as t-—=+oo,

Proor. We prove the assertion for +e<-. (The other case can be proved simi-
larly.)

Let T; be such that T,=T,, T;=1 and p(7})=0. Integrating equation (2.9)
from T] to T, we get

T

f;ic(s)ds= fp(s) f:’c(u)g(u—s)duds.

From this, we have

T T T
f}'c(s)ds= f:'c(u)fp(s)g(u—-s)dsdu+
T, T-1 u

1 ut1 T w1

T=—
*J
T,
If we omit the first term, use (2.6) for the second one and again reverse the order of
integration in the third one, we get

::'c(u)f p(s) g(u—s)ds du+ f'i:(u)f p(s)g(u—s)dsdu.
- el | 4

r T-1

f}’c(s)dsé f x(u) du+ ;}Hp(s) fi(u)g(u——s) du ds.

Denote by I the value of the second integral on the right side. It is positive,
since p(7})=0 because of the choice of T;, F(T;)=0 according to Lemma 2.2,

and both functions are non-negative and continuous. Assume that f X(s)ds<+ e,
Then, letting T'— + =, we have

oo oo

[ x()ds= [ x(u)du+1,

1 Tl
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which is a contradiction. Thus, f %(s) ds= + <=, which implies
Ty

x(t) >+ as t->+oo,

Remark 2.2. 1. The previous two lemmas are also valid for any [t,—1, 1],
where 1,=0.
2. If we suppose that r=1, where r is the constant defined by (2.15), then the
assumption concerning the initial function ¢(7) and others also become simpler.
Indeed, if
g)>=0, —1<t=0,

then instead of (2.12) the condition

[ lo@—o@ldu/(\), 20, —1=1=0,

or, by virtue of (2.13), (2.14), the conditions

[ [0 (0)—(w)] du > 0(<0)
and 7

e(®/(\), —1=1t=0,

can be used, whereas instead of (2.4) and (2.5) the assumptions

t
[ p(s)ds=0, 0<t=1,
0

and
t+1

f p(s)ds =0, t=0,

can be applied.
Next, we consider the existence of the form (2.7). Let ¢, (1), @4(1)€C be such that

(2.17) [ i), dg(w),/, 20, —1=1=0,
(2.18) [ (=0 dg @)\, 20, —1=1=0.
-1

If x,(f), x,(¢) are the solutions corresponding to them, then the function
(2.19) x(t, ) =U=-1)x(D+1x3(8), O=1=1, —1=1=<eo,

is also a solution of equation (1.3) because of linearity. Define the subsets S; and
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S, of the interval [0, 1] as follows:

0
(220) S, = {z€[0, N]3Ty(x) = 0: [ [x(t, D —x(t+u, 7)) dg(w) > 0 for 1 = T,(x)},
-1

0
(221) S; = {€[0, 1]|3Te(x) = 0: [ [x(1, ) —x(t+u, 7)] dg(u) < O for ¢ = Ty(x)}.

We claim the following:

Lemma 2.4. S, and S, are non-empty, half-open intervals and have empty in-
tersection.

Proor. Lemma 2.2, (2.17) and (2.18) imply that 7=0€S,, whereas t=1€S8,.
Hence, both S, and S, are non-empty.

From definitions (2.20) and (2.21) for S; and S, it is clear that S, and S, have
empty intersection.

Finally, we claim that S, is a half-open interval on the right. (Similarly, we can
show that S, is a half-open interval on the left.) Suppose 7€S5,\{0}. By (2.20),
there exists some T=1T(1) such that

0
[ [x(t, ) —x(t+u, )] dg(u) >0 for t=T.
-1
Because of the continuity of the integral in (7, 7), we can choose &¢>0 so that
0
[ Ix(t, ©)—x(t+u, )] dg(u) >0, T=t=T+1,
-1

provided |t'—t|<¢ and 7’€[0,1]. Since x(#,7") is a solution, then, according
to (2.8), we have x(1,7)=0 for T=t=T+1. Then, Lemma 2.2 implies that

(1]
f [x(t, ) —x(t+u, ) dg(u) >0 for t=T,
-1

i.e. 7€S,. This means that S\ {0} is open.
In order for S, to be an interval, it is sufficient to show that if 1,, 7,6 8;, 1, <7,
then €S, for any t,<t<7,. By definition (2.19), we can write

0
S L, D —x(t+u, ] dg () =
-1

0 0
=(1-7) [ x@O-x@+wldz@+t [ [xe()—xo(t+u)] dg(u).

We know from the assumptions and from Lemma 2.2 that the integrals on the
right side have fixed, positive and negative signs on [0, =), respectively. Hence,
the integral on the left side is strictly monotonically decreasing in 7 on [0, 1] for
fixed r. Thus, for any t€(t;, 15), since x(7, 7) is a solution, by using the above
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facts and (2.8), we have
0
[ x(t, D) —x(t+un)] dg(@) =0 for t=T(),
-1

where T'(t)=max {T'(ty), T(z2)}, i.e. 1€S;.
As we have established earlier, 0€S,, so S; is closed from the left.
This completes the proof of the lemma.

The following result is a simple consequence of the lemma.

Corollary 2.2. There must be some t€(0,1) such that the function x(t, 1) sat-
isfies one of the following conditions:

(i) x(r, ©)=const. for t=T(7);

(ii) x(t, 7) is not monotone on any interval [T, ==).

Proor. It follows from the conditions and the properties of the sets S; and S,
that SlmSg=ﬂ, S1USQC[O, 1] and S1US2?¢[0, 1]

Suppose 7€[0, 1]\(S;US;) and there exists no T(r)=0 such that x(1, )=
=const. for t=T(t). If there exists a T(1)=0 such that x(¢, 1)/ for 1=T(7)
(the other case can be continued similarly), then there must be a #,=7(7)+1 such
that X(#,7)=0. By using notation (2.11), this implies F(#,)=0. However,
in this case it follows from Lemma 2.2 that t€S,, which is a contradiction.

Although it is not quite obvious, the function x(7, ) is bounded in the case of
condition (ii) as well, since we can prove the following:

Lemma 2.5. If some solution x(t) of equation (1.3) is not monotone on any in-
terval [T, =), then x(t) must be bounded.

Proor. Assume that solution x(7) is not monotone on any [T, =) and is not
bounded from above. (The other case can be verified similarly.) Then, there exist
numbers O<f,<f,, t;—1,<1, with the following properties:

(1) x(D=x(tr), —1=t<ty,
(i) (D=0, Lh=t=t,
(iii) F(ty) =0,

(iv) F(n) =0, LEL=T,,

(v) F(1;) =0.
Indeed, one can easily construct a number #,>0 such that
x(4) =0,
(2.22) )
x()<x(4), —l=t<t.

By using the definition of #;, and (2.10), we have F(t#,)>0. Because of the con-
tinuity, this holds in a neighbourhood of t,, too. Hence, we find that x(7)=0 there.
Define #4 as follows:

ty = inf {t = #,|x(1) < 0}.
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Since x(t) is not monotone, this number exists and, by virtue of continuity, X(f5)=0.
It is obvious that f#,<t;. Furthermore, considering the definitions of the numbers
t,, t; and (2.8), one can see that F(f3)=0. Now let f, be the following number:

to = inf {i€[t;, t:]|X(¢) = 0, t€[7, 4]}

If t,=t,, we are ready. If #,<t,, then, since %(¢)=0 on [t,, 1], for arbitrary
e¢=>0 there exists some 7=7(¢) such that

rl":f"‘:tg, |f—-!2]-f-£ and i(f)}o.

This means that 1, satisfies (2.22) and the above t, belongs to it as well, and thus
ty<ty. The condition ty—f,<1 must hold because of the uniqueness.
Then, using (v) and (ii), we can write

0 fa—1g
0=F(t)= [ [x(t)-x(t+wldg(w) = [ [x(t)=x(t+u)] dg(w).
'l -1

Since the integrand is positive except at the point #,—1,,

(2.23) 0=g(=1)=g(ta—15).

Considering the continuity of p(f) and the monotony of g(t), it follows from the
above equality and (2.5) that

ty+1

[ p©)gt,—s)ds = fsp(S)g(ra—S) ds = 0.

ty
Hence, it follows from this equality that there must exist some i¢(,, #;) such that
(2.24) P g(ts—1) =0

holds, because the integral is positive. By virtue of (ii) and (iii), p(7,)=0, and if
t; were suitable then one could find a 7 which would be less than it. Then, by using
(ii), (2.8), (2 23) and again (ii), respectively, we have

0=3x@=p@® [IxO)—x(+w)]dgu)=
-1

0 ty—1
=p() [IxO-x@+uw)ldg) = p(@D [ [xO—x({+w)]dgw).

Since p(7)=0 because of (2 24), repeating the earlier consideration, we get

2 ; 0=g(=1) =g,
which contradicts (2.24).
This completes the proof of the lemma

Before showing how we can give the form (2.7) by means of the above asser-
tions, we introduce a result which guarantees the uniqueness of this form.

Lemma 2.6, The t in Corollary 2.2 is unique.
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PRrOOF. Suppose there exist 7; and 1,, 7,77, such that both

(2.25) x(t, 1) = (1 =) x; () + 13 x5(1)
and
(2.26) x(1, 1) = (1 =12 X1 (1) +79.x,(1)

satisfy one of the conditions of Corollary 2.2. Then, according to Lemma 2.5, both
functions are bounded. Eliminating x,(¢) from (2.25) and (2.26), we get

T T
x () = Tz_’ﬁ x(t, ‘r;)—tz_irl x(t, 7).

Since t,#7t, and x(t, 1,), x(¢, T5) are bounded, it follows that x,(f) is bounded.
However, by Lemma 2.3, we know that x,(1)—~+< as t—+e=,
Hence, we have reached a contradiction.

We now pick some fixed solution x,(¢), which corresponds to the following
initial condition:

@21 x@M =00, [ 0= dg()/, 0, —1=1=0,

whereas x(¢#) may be any solution corresponding to

@28)  x=9¢0), [lo(-pWldsw),/,#0, —1=1=0,

where ¢,(1), p(1)€C.
We consider x,(f) as x,(1), and —x(1) as x,(¢). It follows from Lemma 2.6
that there must be a unique 7€(0, 1) such that

x(t, 1) = (1=1)x(D)+1(—x(1)

is bounded. Then, we have
(2.29) x(1) = coxo()+X(1),
where

(1) = —%x(l, )

Clearly, 0<co<+< and %(¢) is bounded. (If @(f)=¢,(1), —r=t=0, then c,=1
and %(1)=0 for 1=-r.)
Similarly, any solution x(z) satislying

(2.30) x(1) = @(1), f [e()—@)]dgu)\, £0, —1=1=0,
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can be uniquely written as (2.29), where

7—1
CD"__ T ]

2 = +-_;-x(r, 7).

Clearly, —oco<cy<0 and £(t) is bounded. (If @(t1)=—gy(t), —r=t=0, then
c=—1 and %()=0 for t=-r.)

In general, it can happen that neither (2.28) nor (2.30) holds, i.e. the initial
function ¢(¢) is not monotone (on [—r, 0]). However, making use of the existence
and uniqueness of the solutions of equation (1.3), one can give the above form
in this case, too.

Let x(1), t€[—1, =), be the solution which corresponds to the initial function
e(1)eC. Since x(1)€C'[0, =), we have

x(1) = x(0)+ f:i(s)ds=x(0)+ fr[.\’c(s)]+ds—ft[3‘c(s)]_ ds, t=0,
0 0 o

where [a],. and [a4]- denote the positive and negative parts of any real number a,
respectively. Hence, we can write the solution in the form

() =x()—-x"(1), t=0,
where the functions

X)) = x(O)+ [ [X(s)] s,
0

x=() = [ [%(s))- ds,
1]

are monotonically increasing on [0, ==). Both x*(¢) and x~(¢) satisfy the assump-
tions of Lemma 2.2 on [0, 1]. Therefore, applying the above conclusions, we get

x(1) = (e — ¢ )x (D +(XF()—-%~(1)), t=0,

where ¢g —cy is a constant, x,(¢) is some fixed unbounded solution corresponding
to the initial condition (2.27), and X*(1)—%(¢) is a bounded solution. The con-
stants and bounded solutions depend on the initial function ¢(¢) by the mediation
of the values taken by x(¢) on [0, 1].

Finally, considering the uniqueness of the solutions, we have

x(1) = coxo(D+X(1), t=-1,
where
Co = Cy —Cq s

S {x(r)—(cg“—r{,‘)xu(r) for —1=1=0,
By X (0)—-%(1) for t=0.
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This completes the proof of the Theorem.
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