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1. Introduction

In [3] the hierarchy of v-products in comparison with the general product
is studied. The aim of this paper is to start similar investigations for the hierarchy
of generalized vi-products in comparison with the generalized product. Namely,
we show that the generalized product is a proper generalization of the generalized
v, -product from the point of view of homomorphic (isomorphic) simulation. More-
over, we overview some results on v, -products.

2. Basic notions

For any finite nonempty set X let X* denote the free monoid of all words over X
(including the empty word 7). Moreover, denote by X*+(=X*—{A}) the free semi-
group of all nonempty words over X. The length of a word p=x, ... x,e X+ is
denoted by |p|(=n). The length of the empty word A is zero per definitionem.
Finally, we put p®=A4, p"=p"='p (peX*, n=0).

By an automaton we mean a system A=(A4, X,d) where A4 is the (nonempty
finite) set of states, X is the (nonempty finite) ser of inputs and d: AXX—~A is the
transition function. We extend é to a function AXX*—~A as usual, i.e.,

é(a,2) = a, o6(a,px)=20(5(a,p),x) (acd, peX*, xcX).

We can consider an automaton as a special algebraic structure. In this sense we
speak about subautomaton, furthermore, homomorphism and isomorphism of auto-
mata. We say that an automaton A homomorphically (isomorphically) represents an
automaton B iff A has a subautomaton which can be mapped homomorphically
(isomorphically) onto B.

Let A=(4,X,d) and B=(B, Y, ) be automata. We say that A homomor-
phically simulates B if there are A’S A, a surjective mapping hy: A’—~B and a
(not necessarily surjective) mapping hy: ¥—-X* with

h] (5(0, hz(}’))) = 6’(‘&] (a)'! _V) (GGA’., yEY)'

4*
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If h, is bijective then A isomorphically simulates B. It can be seen easily that the
concept of homomorphic (isomorphic) simulation is a natural extension of that of
homomorphic (isomorphic) representation.

Let A=(4, X,d) be an automaton. A is mwonotone if there is a partial
ordering = on its state set 4 such that ¢=d(a, x) for all a€A4 and x€X. An
automaton A=(A, X, d) is said to be strongly monotone if there exists a partial
ordering = on A with a=d(a, x) (a€ A, x€X) such that for every pair a€d, xeX
from a=4d(a, x) it follows that ¢ is a maximal element with respect to =. It is
said that A satisfies the semi-Leticevskil condition if there are a€A, x, y€X, peX*
with d(a, x)#d(a, y) and d(a, xp)=a. Moreover, we say that a class K of automata
satisfies the semi-Leti¢evskii condition if there is an element of K with this property.
Finally, we refer to the automaton

E = ({Os 1}9 {xl ’ x2}9 6E)9
6]3(0; xl) e 09 6£(0s xz) o= 5E(19 x)) = 65(19 x!!) - 1

as the (two state) elevator. Obviously, the elevator is a monotone automaton.
Let A,=(4,, X,,d,) (t=1,...,k, k=1) be automata. Take a finite nonempty
set X and the system of feedback functions

with

it Ay Woro XA KK X (B 1, 005 K
We let A=(4, X, 5)=A;X...XAi(X, ¢) be the automaton with A=4,X...X4,,
6((61’ wony at)s x) = (61(a1! (pl(als ey aks x))s ey ék(a.ln (ok(ah veey a.hx)))

((ay, ..., @ )€ A, x€X). The automaton A is called the generalized product or g*-
product of A,, ..., A, (with respect to X and ¢). For an arbitrary state a=(a,, ..., a,)
of A we use the notation =n;(a)=a; and we say that =n,(a)(=aq;) is the i-th projec-
tion of a. Especially, if ¢, has the form ¢,: 4,X...XA4,—~X, (t=1, ..., k) then
we speak about general product or g-product.

We also use the feedback functions in the following extended sense: For arbi-
trary (a,, ..., a)€A, pEX*, x€X, t(=1, ..., k) let

(0,(01, L ajp }*) = ;'s

‘Pt(ab ceey ak'px) - ‘P:(all ceey a,‘,p)rp,(bl, very bka x)&
where
by = 6,(dp 94y oy @y ) (1= 5= K.

Let i be an arbitrary natural number. Moreover, let us given a g*-product
A=A, X...XA;(X, ¢) such that for each #(=1,...,k) aset y(1)&{l, ..., k} with
ly(1)|=i is specified, so that ¢, does not depend on the state variables a, with s§y(r)
(1=s=k). Then we write A=A, X...XA,(X,@,7) and call A a generalized v
product or vi-product. Especially, if we have the form ¢, 4, X... XA, XX~X,
(t=1, ...,k) then A is a vi-product. (Usually, if s¢y(r) (1=s, t=k) then we omit
the s-th argument of ¢,.)
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If every component of a product (generalized product) of automata is the same
then we speak about a power (generalized power) of automata.

By a class K of automata we shall always mean a nonempty class. Let K be a
class of automata. We say that K is isomorphically (homomorphically) S-complete
with respect to the g*-product (g-product, vi-product, vi-product) if every auto-
maton can be simulated isomorphically (homomorphically) by a g*-product
(g-product, v;-product, vi-product) of automata from K. The following results hold.

Theorem 2.1. (GECseG [4], [5].) Let K be a class of automata. K is isomorphically
(or homomorphically) S-complete with respect to the g*-product iff K contains a
nonmonotone automaton.

Theorem 2.2. (Domosi—IMren [1], Démosi—Esik [2].) Let K be a class of auto-
mata. K is isomorphically (or homomorphically) S-complete with respect to the vi-
product iff K contains a nonmonotone automaton.

Now let K be a class of automata again. We define the following classes.

P(K) :=all g-products of automata from K;

Pf(K) :=all g*-products of automata from K:

P, (K) :=all vproducts of automata from K:

P}(K) :=all v{-products of automata from K

IS(K) :=all automata which can be represented isomorphically by automata
from K:

HS(K) :=all automata which can be represented homomorphically by auto-
mata from K;

IS*(K) :=all automata which can be simulated isomorphically by automata
from K;

HS™*(K):=all automata which can be simulated homomorphically by automata
from K.

Let O, and O, be one of the operators IS, HS, IS*, HS* and P,, P}, P,, P;:'
(i=1,2,...), respectively. For every class K of automata we define 0,0,(K) as
the class 0,(0,(K)). We shall use the following consequence of results in [4] and [5].

Theorem 2.3. (GicseG [4], [5].)
1S By ({E)) = 15°P, ({E))

is the class of all monotone automata (where E denotes the elevator).

Consider any class K of automata with the following properties. For arbitrary
integer k=0, there exist an automaton A=(4, X, 6)€K, a state a€A4, an input
word peX* with |p|=k, and a pair x;, x,€X of inputs such that d(a, px;)#
#0d(a, px,). It is shown in [5] that metrically complete classes of automata for the
general product are exactly such classes K. We have as follows.

Theorem 2.4. (GicseG and IMRreH [7].) If K is a metrically noncomplete class of
automata then
HSP,(K) = HSP, (K).

We now prove briefly the following result.
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Theorem 2.5. If K is a class of strongly monotone automata then
HSP,(K) = HSP, (K).

ProoF. Since the class of strongly monotone automata does not satisfy the
semi-Leti¢evskii condition, Theorem 2.5 directly follows from Theorem 4.2 of Gk-
CSEG and JURGENSEN in [8]. [

3. v{-product

Consider the automaton A=({ay, ay, as, a;}, {x1, X}, 6), where
0(ay, x;) = a5, 0(ay,x;) = Gy, 0(ay, X;) = a3, (g, Xy) = Gy,
d(ag, x;) = 6(ay, xy) = a3, d(ay, x;) = 6(ay, x;) = ay.
Suppose that A can be simulated homomorphically by a vy-power
M = (M, X, oy) = E"(X, 0,7)

under the subset M’ S M and mappings h,: M’ —~{a,, a,, as, a,} and hy: {x;, x,}~X"*.
Let hy(x;)=py, ho(xs)=p, and let m, be a counter image of a,. Without loss of
generality, we may suppose that 71, is choosen in such a way that 8y (my, p,)=m,.

Indeed, this can be shown in the following way. Since M is finite and
d(ay, x,)=ay, there exist a state m, € M’ with h, (m,)=a, and a positive integer ¢ such
that dyg(m,, p*) =m, which, by the special structure of M, implies dy(my, p1)=m,.

In the following two Lemmas and in Statement 3.3 we use the above automata
A, M, subset M’, mappings h,, hy, words p,, p, and state m,. Moreover, let my,=
=dm(my, ps), Z, the set of all letters occurring in p, and Z, the corresponding set
for p,. Finally, set Z=Z,UZ,.

Lemma 3.1. Let i, j (1=i,j=m) be arbitrary integers with y(i)={j}. If
n(mg)=m;(my) =0, then ¢,(0,z)=x, for all zEZ.

Proor. First of all, observe that
g I m(my) = m;(my) =0
implies
mi(my) = m;(m,) = 0.
Since Jyy(my, p;)=m,, for every subword p of p, we have
ni(‘sM(ml,P)) = “J(‘SM(NH ,P)) =0.

Therefore, ¢;(0,z)=x; for all z€Z,. Similarly, dy,(m,.p,)=m, implies that for
all subwords p of p, the equality

“i(‘sM(”hsP)) = “j(‘sm(’”n P)) =0.
Thus ¢;(0,z)=x, for all zéZ,. O
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Lemma 3.2. Let iy, ...,i; (1=iy, ...,i;=m) be a sequence of positive integers
such that
7(8) = {1} (1<1=)), “i;(mg =1

T, (my) =...= m; (my) = 0.

Then the following statements hold.
(i) For arbitrary t (1<t=j) and n=t—1 we have

i, ((SM(m,, (Plpz)')) =1

¢u(lyz) =...= 9,,(1,2,-1) = x,

under some zy, ...,z,_€Z.
(ii) For arbitrary t (1<t=j) and n=t—1 we have

7, (O (s, (papy)") = 1
¢0i(1,2) =...= ¢, (1, 2,1) = X

under some zy, ...,z;€Z.
(iii) For arbitrary t (1=t=j) and n=j—1 the equality

“it(‘sm(mz; (P1Pz)")) = “i,(‘sm(mzs (Pzpl)“))

and

iff

i

holds.

Proor. Statements (i) and (ii) easily follow from Lemma 3.1 by induction on 1.
If =1 then Statement (iii) follows from

i (Om(ma, p)) =1 (pEX™).
If 1=t=j then Statement (iii) is a direct consequence of (i) and (ii). [
Statement 3.3. For some integer k=0, dp;(my, (p,p2)*)=0pm(mq, (Pep))*).

Proor. Let k=m—1. It is enough to show that for arbitrary i (1=i=m),

“t(‘sm (m,, (Ple)k)) =1 iff ﬂi(am(mas (Pspl)k)) =1

It is also clear that we may restrict ourselves to the case when =;(m,)=0.
Let i, ...,i; be a chain such that
(1) #=i and (i) ={i,-,} (1<t=)),
(2a) m;,(my)=...=m; (my)=0 and =m;(my)=1 or
(2b) m; (my)=...=m; (m») 0 and y(iR)E i, ...n i}
By Lemma 3.1, in case (2b), = i(Opm(ma, (pyp2) )) 0 and

(O (mg, (papy))) = 0
for arbitrary /=0 and i€ {i, ..., f,}. In case (2a), by (iii) of Lemma 3.2,

T, (61\1 (my, (Pupz)”)) =T, (5M (my, (PzPJJ"))
for arbitrary #(=1,...,j) and n=j-1.
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Since for vi-products the length of any chain satisfying (1) and (2a) is less than
or equal to m, the conclusion of the Statement holds for arbitrary k with
k=m-1. 0O

Observe that for every k=1, §(ay, (x;x)")=a; and &(az, (x3x))*)=a,.
Therefore,

Om(ma, (P1p2)*) # Oni(ma, (p2pr)*)

which contradicts Statement 3.3. This contradiction arised from the assumption
that there is a vi-power M of E such that M homomorphically simulates A. More-
over, it is clear that A is a monotone automaton. Thus we get the following result.

Theorem 3.4. HS*P*({E)}) does not contain all monotone automata.
It is clear that HS*P:({E})SHS*P}({E}). Thus, by Theorems2.3 and 3.4

HS*R({E})) c HS*E({E}) = IS"E({E}).
Consequently, we obtain our main result.
Theorem 3.5. There exists a class K of automata with
HS*P;(K) c HS*P}(K) = IS*F}(K).

In other words, the generalized product is a proper generalization of the generalized
vy -product from the point of view of homomorphic (and isomorphic) simulation.
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