Simulation by v₁*-products of automata

By P. DÖMÖSI (Debrecen) and F. GÉCSEG (Szeged)

Dedicated to Professor Zoltán Daróczy on his 50th birthday

1. Introduction

In [3] the hierarchy of v_i -products in comparison with the general product is studied. The aim of this paper is to start similar investigations for the hierarchy of generalized v_i -products in comparison with the generalized product. Namely, we show that the generalized product is a proper generalization of the generalized v_1 -product from the point of view of homomorphic (isomorphic) simulation. Moreover, we overview some results on v_1 -products.

2. Basic notions

For any finite nonempty set X let X^* denote the *free monoid* of all words over X (including the *empty word* λ). Moreover, denote by $X^+(=X^*-\{\lambda\})$ the *free semi-group* of all nonempty words over X. The *length* of a word $p=x_1 \dots x_n \in X^+$ is denoted by |p|(=n). The length of the empty word λ is zero per definitionem. Finally, we put $p^0=\lambda$, $p^n=p^{n-1}p$ $(p\in X^*, n>0)$.

By an automaton we mean a system $A=(A, X, \delta)$ where A is the (nonempty finite) set of states, X is the (nonempty finite) set of inputs and $\delta: A \times X \to A$ is the transition function. We extend δ to a function $A \times X^* \to A$ as usual, i.e.,

$$\delta(a,\lambda) = a, \quad \delta(a,px) = \delta(\delta(a,p),x) \quad (a \in A, p \in X^*, x \in X).$$

We can consider an automaton as a special algebraic structure. In this sense we speak about *subautomaton*, furthermore, *homomorphism* and *isomorphism* of automata. We say that an automaton A *homomorphically* (*isomorphically*) represents an automaton B iff A has a subautomaton which can be mapped homomorphically (*isomorphically*) onto B.

Let $A = (A, X, \delta)$ and $B = (B, Y, \delta')$ be automata. We say that A homomorphically simulates **B** if there are $A' \subseteq A$, a surjective mapping $h_1: A' \rightarrow B$ and a (not necessarily surjective) mapping $h_2: Y \rightarrow X^*$ with

$$h_1(\delta(a, h_2(y))) = \delta'(h_1(a), y) \quad (a \in A', y \in Y).$$

If h_1 is bijective then A isomorphically simulates B. It can be seen easily that the concept of homomorphic (isomorphic) simulation is a natural extension of that of homomorphic (isomorphic) representation.

Let $A = (A, X, \delta)$ be an automaton. A is monotone if there is a partial ordering \leq on its state set A such that $a \leq \delta(a, x)$ for all $a \in A$ and $x \in X$. An automaton $A = (A, X, \delta)$ is said to be strongly monotone if there exists a partial ordering \leq on A with $a \leq \delta(a, x)$ ($a \in A, x \in X$) such that for every pair $a \in A, x \in X$ from $a = \delta(a, x)$ it follows that a is a maximal element with respect to \leq . It is said that A satisfies the semi-Letičevskii condition if there are $a \in A, x, y \in X$ with $\delta(a, x) \neq \delta(a, y)$ and $\delta(a, xp) = a$. Moreover, we say that a class K of automata satisfies the semi-Letičevskii condition if there is an element of K with this property. Finally, we refer to the automaton

$$E = (\{0, 1\}, \{x_1, x_2\}, \delta_E),$$

with

$$\delta_{\rm E}(0,x_1)=0, \quad \delta_{\rm E}(0,x_2)=\delta_{\rm E}(1,x_1)=\delta_{\rm E}(1,x_2)=1$$

as the (two state) elevator. Obviously, the elevator is a monotone automaton.

Let $A_t = (A_t, X_t, \delta_t)$ $(t=1, ..., k, k \ge 1)$ be automata. Take a finite nonempty set X and the system of feedback functions

$$\varphi_t: A_1 \times ... \times A_k \times X \to X_t^* \quad (t = 1, ..., k).$$

We let $A = (A, X, \delta) = A_1 \times ... \times A_k(X, \varphi)$ be the automaton with $A = A_1 \times ... \times A_k$,

$$\delta((a_1, ..., a_k), x) = (\delta_1(a_1, \varphi_1(a_1, ..., a_k, x)), ..., \delta_k(a_k, \varphi_k(a_1, ..., a_k, x)))$$

 $((a_1, ..., a_k) \in A, x \in X)$. The automaton A is called the generalized product or g^* -product of $A_1, ..., A_k$ (with respect to X and φ). For an arbitrary state $a = (a_1, ..., a_n)$ of A we use the notation $\pi_i(a) = a_i$ and we say that $\pi_i(a) (= a_i)$ is the *i-th projection* of a. Especially, if φ_t has the form $\varphi_t \colon A_1 \times ... \times A_k \to X_t$ (t=1, ..., k) then we speak about general product or g-product.

We also use the feedback functions in the following extended sense: For arbitrary $(a_1, ..., a_k) \in A$, $p \in X^*$, $x \in X$, t = 1, ..., k let

$$\varphi_t(a_1,...,a_k,\lambda)=\lambda,$$

$$\varphi_t(a_1, ..., a_k, px) = \varphi_t(a_1, ..., a_k, p)\varphi_t(b_1, ..., b_k, x),$$

where

$$b_s = \delta_s(a_s, \varphi_s(a_1, ..., a_k, \Gamma)) \quad (1 \le s \le k).$$

Let i be an arbitrary natural number. Moreover, let us given a g^* -product $\mathbf{A} = \mathbf{A_1} \times ... \times \mathbf{A_k}(X, \varphi)$ such that for each t(=1, ..., k) a set $\gamma(t) \subseteq \{1, ..., k\}$ with $|\gamma(t)| \le i$ is specified, so that φ_t does not depend on the state variables a_s with $s \notin \gamma(t)$ $(1 \le s \le k)$. Then we write $\mathbf{A} = \mathbf{A_1} \times ... \times \mathbf{A_k}(X, \varphi, \gamma)$ and call \mathbf{A} a generalized v_i -product or v_i^* -product. Especially, if we have the form $\varphi_t \colon A_1 \times ... \times A_k \times X \to X_t$ (t=1, ..., k) then \mathbf{A} is a v_i -product. (Usually, if $s \notin \gamma(t)$ $(1 \le s, t \le k)$ then we omit the s-th argument of φ_t .)

If every component of a product (generalized product) of automata is the same

then we speak about a power (generalized power) of automata.

By a class K of automata we shall always mean a nonempty class. Let K be a class of automata. We say that K is isomorphically (homomorphically) S-complete with respect to the g^* -product (g-product, v_i^* -product) if every automaton can be simulated isomorphically (homomorphically) by a g^* -product (g-product, v_i^* -product, v_i^* -product, v_i^* -product) of automata from K. The following results hold.

Theorem 2.1. (GÉCSEG [4], [5].) Let K be a class of automata. K is isomorphically (or homomorphically) S-complete with respect to the g*-product iff K contains a nonmonotone automaton.

Theorem 2.2. (DÖMÖSI—IMREH [1], DÖMÖSI—ÉSIK [2].) Let K be a class of automata. K is isomorphically (or homomorphically) S-complete with respect to the v_1^* -product iff K contains a nonmonotone automaton.

Now let K be a class of automata again. We define the following classes.

 $P_a(K)$:= all g-products of automata from K;

 $P_g^*(K) := \text{all } g^*\text{-products of automata from } K;$

 $P_{v_i}(K) := \text{all } v_i \text{-products of automata from } K;$

 $P_{v_i}^*(K) := \text{all } v_i^* \text{-products of automata from } K;$

IS(K) := all automata which can be represented isomorphically by automata from K;

HS(K) := all automata which can be represented homomorphically by automata from K:

 $IS^*(K) :=$ all automata which can be simulated isomorphically by automata from K:

 $HS^*(K)$:=all automata which can be simulated homomorphically by automata from K.

Let O_1 and O_2 be one of the operators IS, HS, IS^* , HS^* and P_g , P_g^* , P_{v_i} , $P_{v_i}^*$, (i=1,2,...), respectively. For every class K of automata we define $O_1O_2(K)$ as the class $O_1(O_2(K))$. We shall use the following consequence of results in [4] and [5].

Theorem 2.3. (Gécseg [4], [5].)

$$HS^*P_g^*(\{\mathbb{E}\}) = IS^*P_g^*(\{\mathbb{E}\})$$

is the class of all monotone automata (where E denotes the elevator).

Consider any class K of automata with the following properties. For arbitrary integer $k \ge 0$, there exist an automaton $A = (A, X, \delta) \in K$, a state $a \in A$, an input word $p \in X^*$ with |p| = k, and a pair $x_1, x_2 \in X$ of inputs such that $\delta(a, px_1) \ne \delta(a, px_2)$. It is shown in [5] that metrically complete classes of automata for the general product are exactly such classes K. We have as follows.

Theorem 2.4. (GÉCSEG and IMREH [7].) If K is a metrically noncomplete class of automata then

$$HSP_g(K) = HSP_{v_1}(K)$$
.

We now prove briefly the following result.

Theorem 2.5. If K is a class of strongly monotone automata then

$$HSP_g(K) = HSP_{v_1}(K).$$

PROOF. Since the class of strongly monotone automata does not satisfy the semi-Letičevskii condition, Theorem 2.5 directly follows from Theorem 4.2 of Gécseg and JÜRGENSEN in [8].

3. v₁*-product

Consider the automaton $A = (\{a_1, a_2, a_3, a_4\}, \{x_1, x_2\}, \delta)$, where

$$\delta(a_1, x_1) = a_1, \quad \delta(a_1, x_2) = a_2, \quad \delta(a_2, x_1) = a_3, \quad \delta(a_2, x_2) = a_4,$$

 $\delta(a_3, x_1) = \delta(a_3, x_2) = a_3, \quad \delta(a_4, x_1) = \delta(a_4, x_2) = a_4.$

Suppose that A can be simulated homomorphically by a v₁*-power

$$\mathbf{M} = (M, X, \delta_{\mathbf{M}}) = \mathbf{E}^m(X, \varphi, \gamma)$$

under the subset $M' \subseteq M$ and mappings $h_1: M' \to \{a_1, a_2, a_3, a_4\}$ and $h_2: \{x_1, x_2\} \to X^*$. Let $h_2(x_1) = p_1$, $h_2(x_2) = p_2$ and let m_1 be a counter image of a_1 . Without loss of generality, we may suppose that m_1 is choosen in such a way that $\delta_M(m_1, p_1) = m_1$.

Indeed, this can be shown in the following way. Since M is finite and $\delta(a_1, x_1) = a_1$, there exist a state $m_1 \in M'$ with $h_1(m_1) = a_1$ and a positive integer t such that $\delta_M(m_1, p^t) = m_1$ which, by the special structure of M, implies $\delta_M(m_1, p_1) = m_1$.

In the following two Lemmas and in Statement 3.3 we use the above automata A, M, subset M', mappings h_1 , h_2 , words p_1 , p_2 and state m_1 . Moreover, let $m_2 = \delta_{\mathbf{M}}(m_1, p_2)$, Z_1 the set of all letters occurring in p_1 and Z_2 the corresponding set for p_2 . Finally, set $Z = Z_1 \cup Z_2$.

Lemma 3.1. Let $i, j \ (1 \le i, j \le m)$ be arbitrary integers with $\gamma(i) = \{j\}$. If $\pi_i(m_2) = \pi_j(m_2) = 0$, then $\varphi_i(0, z) = x_1$ for all $z \in \mathbb{Z}$.

PROOF. First of all, observe that

$$\pi_i(m_2) = \pi_j(m_2) = 0$$

implies

$$\pi_i(m_1) = \pi_i(m_1) = 0.$$

Since $\delta_{\rm M}(m_1, p_1) = m_1$, for every subword p of p_1 we have

$$\pi_i(\delta_{\mathbf{M}}(m_1, p)) = \pi_j(\delta_{\mathbf{M}}(m_1, p)) = 0.$$

Therefore, $\varphi_i(0,z)=x_1$ for all $z\in \mathbb{Z}_1$. Similarly, $\delta_{\mathrm{M}}(m_1,p_2)=m_2$ implies that for all subwords p of p_2 the equality

$$\pi_i(\delta_{\mathbf{M}}(m_1, p)) = \pi_j(\delta_{\mathbf{M}}(m_1, p)) = 0.$$

Thus $\varphi_i(0,z)=x_1$ for all $z\in Z_2$. \square

Lemma 3.2. Let $i_1, ..., i_j$ $(1 \le i_1, ..., i_j \le m)$ be a sequence of positive integers such that

$$\gamma(i_t) = \{i_{t-1}\}\ (1 < t \le j), \ \pi_{i_1}(m_2) = 1$$

and

$$\pi_{i_2}(m_2) = \ldots = \pi_{i_1}(m_2) = 0.$$

Then the following statements hold.

(i) For arbitrary t $(1 < t \le j)$ and $n \ge t-1$ we have

$$\pi_{i_*}(\delta_{\mathbf{M}}(m_2,(p_1p_2)^n))=1$$

iff

$$\varphi_{i_2}(1, z_1) = \dots = \varphi_{i_t}(1, z_{t-1}) = x_2$$

under some $z_1, ..., z_{t-1} \in \mathbb{Z}$.

(ii) For arbitrary t $(1 < t \le j)$ and $n \ge t-1$ we have

$$\pi_i \left(\delta_{\mathbf{M}}(m_2, (p_2 p_1)^n) \right) = 1$$

iff

$$\varphi_{i_2}(1, z_1) = \dots = \varphi_{i_t}(1, z_{t-1}) = x_2$$

under some $z_1, ..., z_{t-1} \in \mathbb{Z}$.

(iii) For arbitrary t $(1 \le t \le j)$ and $n \ge j-1$ the equality

$$\pi_{i_t}(\delta_{\mathbf{M}}(m_2, (p_1p_2)^n)) = \pi_{i_t}(\delta_{\mathbf{M}}(m_2, (p_2p_1)^n))$$

holds.

PROOF. Statements (i) and (ii) easily follow from Lemma 3.1 by induction on t. If t=1 then Statement (iii) follows from

$$\pi_{i_1}(\delta_{\mathbf{M}}(m_2,p))=1 \quad (p\in X^*).$$

If $1 < t \le j$ then Statement (iii) is a direct consequence of (i) and (ii). \square

Statement 3.3. For some integer k>0, $\delta_{M}(m_2,(p_1p_2)^k)=\delta_{M}(m_2,(p_2p_1)^k)$.

PROOF. Let $k \ge m-1$. It is enough to show that for arbitrary i $(1 \le i \le m)$,

$$\pi_i(\delta_{\mathbf{M}}(m_2, (p_1p_2)^k)) = 1$$
 iff $\pi_i(\delta_{\mathbf{M}}(m_2, (p_2p_1)^k)) = 1$.

It is also clear that we may restrict ourselves to the case when $\pi_i(m_2)=0$.

Let $i_1, ..., i_j$ be a chain such that

(1) $i_j = i$ and $\gamma(i_t) = \{i_{t-1}\} (1 < t \le j)$,

(2a) $\pi_{i_2}(m_2) = \dots = \pi_{i_j}(m_2) = 0$ and $\pi_{i_1}(m_2) = 1$ or (2b) $\pi_{i_1}(m_2) = \dots = \pi_{i_j}(m_2) = 0$ and $\gamma(i_1) \subseteq \{i_1, \dots, i_j\}$. By Lemma 3.1, in case (2b), $\pi_i(\delta_{\mathbf{M}}(m_2, (p_1p_2)')) = 0$ and

$$\pi_i(\delta_{\mathcal{M}}(m_2,(p_2p_1))^t)=0$$

for arbitrary $t \ge 0$ and $i \in \{i_1, ..., i_i\}$. In case (2a), by (iii) of Lemma 3.2,

$$\pi_{i_t}(\delta_{\mathbf{M}}(m_2,(p_1p_2)^n)) = \pi_{i_t}(\delta_{\mathbf{M}}(m_2,(p_2p_1)^n))$$

for arbitrary t(=1,...,j) and $n \ge j-1$.

Since for v_1^* -products the length of any chain satisfying (1) and (2a) is less than or equal to m, the conclusion of the Statement holds for arbitrary k with $k \ge m-1$.

Observe that for every $k \ge 1$, $\delta(a_2, (x_1 x_2)^k) = a_3$ and $\delta(a_2, (x_2 x_1)^k) = a_4$. Therefore,

 $\delta_{M}(m_{2},(p_{1}p_{2})^{k})\neq\delta_{M}(m_{2},(p_{2}p_{1})^{k})$

which contradicts Statement 3.3. This contradiction arised from the assumption that there is a v_1^* -power M of E such that M homomorphically simulates A. Moreover, it is clear that A is a monotone automaton. Thus we get the following result.

Theorem 3.4. $HS^*P_{\nu_1}^*(\{E\})$ does not contain all monotone automata. It is clear that $HS^*P_{\nu_1}^*(\{E\})\subseteq HS^*P_q^*(\{E\})$. Thus, by Theorems 2.3 and 3.4

$$HS^*P_{\nu_1}^*(\{E\}) \subset HS^*P_g^*(\{E\}) = IS^*P_g^*(\{E\}).$$

Consequently, we obtain our main result.

Theorem 3.5. There exists a class K of automata with

$$HS^*P_{\nu_1}^*(K) \subset HS^*P_q^*(K) = IS^*P_q^*(K).$$

In other words, the generalized product is a proper generalization of the generalized v_1 -product from the point of view of homomorphic (and isomorphic) simulation.

References

- [1] P. Dömösi and B. Imreh, On ν_i-products of automata, Acta Cybernetica, 6 (1983), pp. 149—
- [2] P. Dömösı and Z. Ésik, On Homomorphic Simulation of Automata by v₁-Products, Papers on Automata and Languages IX, No. DM87-2, pp. 91-112., Karl Marx University of Economics, Department of Mathematics, Budapest (1987).
- [3] P. Dömösi and Z. Ésik, On the hierarchy of vi-products of automata, Acta Cybernetica, 8 (1988), pp. 253-258.
- [4] F. GÉCSEG, On Products of Abstract Automata, Acta Sci. Math., 38 (1976), pp. 21—43.
 [5] F. GÉCSEG, Products of Automata, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo
- [6] F. Gécseg, Metric representations by v_i-products, Acta Cybernetica, 7 (1985), pp. 203—209.
- [7] F. Gécseg and B. Imreh, On metric equivalence of v_i-products, Acta Cybernetica, 8 (1987), pp. 129-134.
- [8] F. GÉCSEG and H. JÜRGENSEN, On α₀-ν₁-Products of Automata, Report No. 162, Univ. of Western Ontario, Department of Computer Science (1987).

DEPARTMENT OF MATHEMATICS L. KOSSUTH UNIVERSITY EGYETEM TÉR I DEBRECEN, HUNGARY H-4032

DEPARTMENT OF COMPUTER SCIENCE A. JÓZSEF UNIVERSITY ARADI VÉRTANÚK TERE I SZEGED, HUNGARY H-6720

(Received October 19, 1988)