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0. Introduction

In this paper we generalize some results connected with the extreme points of
finite dimensional polyhedral sets, for subsets of the space NBV [a, f] defined
by moment inequalities. A generalisation of the structure theorem will be proved
and, by its use, some theorems on the existence of extreme points. The results ob-
tained are based mainly on [1] and further extend some of the results of [2] and [3].

1. Basic facts and notations

Let [, f]JcR be a finite closed interval, NBV [«, ] the Banach space of all
real valued normed functions of bounded variation defined on [a, f]. We shall
assume that each o€ NBV [a, ] is normed in the following sense:

(i) o(2)=0,

(ii) o is right continuous on (2, f).

Let NBV, [x, f] be the positive cone of NBV [«, f] consisting of all non-
decreasing functions ¢€NBV [z, f].

Definition 1.1. For a g€ NBV, [«, f], S(6)<[«, f] denotes the set of all in-
creasing points of ¢. S(0o) is called the spectrum of .

Definition 1.2. We define the functions e; on [, f] in the following way. Let

0, if t=qo

ea(r):{l, if a<t=f
and let for A€(x, f)
0, if ast<i

e“(t)={l, if A=t=§.

Proposition 1.1 [1]. (a) For every i€[a, f] e,;€NBV, [, f].
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(b) If 66 NBV , [«, B] is a step function with a finite number of jumps, then it
can be expressed in the form

k
¥ ‘Z; 2i€,,

where 0,=>0 for i=1,2, ...,k and o<l <ly<...<M<P. Moreover, for all con-
tinuous functions @: [o, f]—R, the Stieltjes integral of ¢ with respect to @ can be
written in the following form:

/4 k
[ e de(d) = 2 a9 ().

R™ denotes the vector space of all m-tuples of real numbers and R% CR™ is
the set of vectors with nonnegative components. E stands for the m-order quadratic
identity matrix. For 6 NBV_ [, f/] and weéR™, we consider the equation:

'}
(1.1) f u(f)de (1)+Ew = b,

@

where u: [o, f]-R™ is a given continuous vector-valued function and bER™ is
a fixed vector.

Definition 1.3. A solution (g, w)é NBV [o, f]XR™ of (1.1) is called an ad-
missible solution if 66 NBV, [«, f] and weR}.

Let ¢; denote the i-th column vector of E (i=1, 2, ..., m) and for each weR},
let P(w) denote the set of all indices i, for which the i-th component of w is positive.

Definition 1.4. An admissible solution (o, w) of (1.1) is called an admissible
basic solution if the system of vectors
(1.2) u(l), 2€S(e), e, icP(w)
is linearly independent in the space R™. If (g, w)=(0, Q) is a solution of (1.1) then
it will be assumed to be an admissible basic solution.

Remark 1.1. Since there exist only m independent vectors in R™, if (o, w) is
an admissible basic solution of (1.1) then ¢ has at most m points of increase. In
other words, in this case, ¢ is a step function with at most m jumps.

Definition 1.5. Let V(b) denote the set of all admissible solutions of (1.1)
and let

B
(13) V(b) = {cENBV [, B]: [ u(1)do() = b}
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2. The characterization of the extreme points of V'(b)
In this section we shall be concerned with the problem of the characterization
of ext V(b).
Proposition 2.1. V' (b)/V(b) is a convex subset of the space
NBV [, f]/NBV [a, f]XR™.

Proposition 2.2. ocext V(b) iff a weR;; exists such that (o, w)Eext V(D).
In view of Definition 1.5 these propositions are obvious.

Theorem 2.1. The set ext V(b) consists of all admissible basic solutions of (1.1).

Proor. Let (o, w) be an admissible basic solution of (1.1). At first we assume
that the sets S(¢) and P(w) are nonvoid. Let

S(0) = A1y oes Ay

and

P(W) = J1s ees Jie
Then k+1=m and, by virtue of Definition 1.4, the vectors
(2.1) H(ll), CERTY u(lk)9 e.h’ ey ej,

are linearly independent in R™. Morcover, ¢ has the representation

k
@ == Z Qiell
i=1

where ¢,>0 for i=1,2, ...,k and if w has the components w,, ws, ..., w, then
the relation

k 1
(2.2) b= ‘21 oiu(4) + 521 Wj.ej,

holds. Suppose that there exist (o, w,), (65, wo)€V (b)) and O<=v<1 satisfying the
condition
(o, w) = v(ay, w)+(1—=v)(0s, Wy).
This implies that
o = vo,+(1—v)a,

w = ww+(1—v)w,.
Therefore, in consequence of O<v<1, we get S(6,)ES(0), P(w)EP(w) for
i=1, 2. Thus, there exist nonnegative numbers i, ..., ¢; and gy, ..., ¢x such that

k k
o = Z Qfea,—- Gy = Z Q:ea,-
i=1 i=1
If wi,...,w, and w”, ..., w, denote the components of w; and w, then we have

k ] k ]
(2-3) Z Qlf”(}'i)-}‘i.z';. w}teh = :2; Q;’ “U‘i)-'-‘z;. Wy e = b.

i=1
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Since the vectors (2.1) are linearly independent, (2.1) and (2.3) imply oi=p!=0;
for i=1,2, ...,k and wi=w]=w; for i€ P(w). Consequently we obtain (o,, w,)=
=(0y, Wwg)=(o, w). Therefore (o, w) is an extreme point of V(b). Observe that
in the cases where S (o) and/or P(w) are empty sets, the proof becomes easier.

To prove the necessity of the condition we assume (a,, wy)€ext ¥ (b) and let
for i=1,2,...,m+1

[
(2.4) ri= [ u@)d(1+o())".

Evidently the vectors defined by (2.4) are dependent, thus there exist real numbers v;
(i=1,2,...,m+1) so that

m+1

(2.5) 2 Vl r,- = 0
i=1
m+1

(26) T

With the aid of these numbers, we define the function ¢ on the half line 0<x<e
by the relation

o(x) = zl v,[(1 + )Y —1].

In [1] the following properties of ¢ are shown:
(a) @(0)=0.
(b) @ is continuous on [0, ).
(©) ©(x)—@(x)<x3—x; holds for arbitrary 0<=x;<x,.
(d) @ has at most m+1 roots in [0, ).
Let us now define the functions o, and o, by

(2.7) 0,(1) = ay(1)+ ¢ (ay(0)), t€[x, B]
(2.8) a3(1) = ao()—@(ay(1), 1€[a, B).

Using the assertions (a), (b) and (c) it is easy to see that the functions just defined
belong to NBV, [a, f]. On the other hand o satisfies by its definition, by (2.5) and
(2.6) the relation

]
J u()do(a,(0) =0

hence in view of (2.7) and (2.8)

B [

J w(@doy() = [ u(t)doy(r) = f u(f)day(1).

x a a

Consequently, we get (g, wo), (02, w)EV (b). (04, w,) is obviously a nontrivial
convex combination of (g,, w,) and (o, w,), so we can infer by our assumption
(0, Wwo)Eext P (b) that 6,=0,=0,. From this it follows by (2.7) and (2.8) that
for all r€[a, f] @(0o(r))=0 holds. This means that by (d) the range of ¢ consists
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of at most m+1 elements, from which we immediately obtain that S(o,) contains
at most m elements.
To complete the proof it remains only to show the independence of the vectors

(2.9) u(2), A€S(ao); ej, JEP(W).

This is obviously clear in the case of S(o,)=0. Furthermore the cases of S(a,)#0,
P(wy)#0 and S(o,)#0, P(w,)=0 can be handled in a unified manner. For ex-
ample, let S(6o)=41, Aay ..., 4 and P(wy)=j,Jja, ..., J;- Then o, may be ex-
pressed in the form
k
Oy = Z 0:€;,

i=1
where ;=0 for i=1,2,...,k. If wy, wy, ..., w, denotes the components of wg,
then we have

k 1
b = Zl'. Q‘“().i)-i-'-zll 'Wj‘eh.
Suppose now that the real numbers v, vg, ..., v and py, g, ..., y; satisfy
k )
(2.10) 2 viuli)+ > pme;, =0
i=1 i=1

Without loss of generality, we can assume that v,<p; for i=1,2, ...,k and w<w;,
for i=1,2,....,1. Then it is easy to see that the pairs (¢,,w;) and (o,,w,) de-
fined by

k 1
gy = ‘g; (Q;+v,-)e;,‘; W = WO+IZI Hi€j,
and

k 1
Oy = t;; (0i—vde,s we= "-’o—lzl H;ej,

belong to V(b), furthermore (oo, wo)=1/2(0y, wy)+1/2(c5, w). Hence in con-
sequence of (o,, wo)cext V(b), we get o,=0,=06,, W;=Wwy=w,, which means, by
the definition of ¢,, 6., Wy, w,, that all the numbers v; and y; are zero. Therefore,
we have shown that (2.10) implies v,=v,=...=%=0 and p=p,=...=u;=0,
i.e. the system (2.9) is indeed linearly independent. This completes the proof of Theo-
rem 2.1.

As an immediate consequence of the above theorem and the Proposition 2.1
we find the following

Corollary 2.1. ocext V(b) iff there exists a weR™ so that (o,w) is an ad-
missible solution of (1.1).

Remark 2.1. The notion of admissible (basic) solution of the equation

B

(2.11) [ u(®de(t) =b
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can be defined analogously to Definitions 1.3 and 1.4. Let V(b) denote the set of
all admissible solutions of (2.11). The extreme points of V' (b) were first examined
in [3] under certain additional conditions, for which the components of u constitute
a Chebyshev system on [, f]. In [1] we proved, without additional conditions,
that ext ¥V(b) consists of all admissible basic solutions of (2.11). The same result
can be obtained from our above considerations replacing in (2.11) each equation by
two inequalities.

Remark 2.2. Let A be a real (m,n) matrix. It is well known that the set of
extreme points of the finite dimensional polyhedron L which is defined by
L={x€R™: Ax=b, x=0} consists of all admissible basic solutions of the equa-
tion Ax=b. Our result may be regarded as an infinite dimensional extension of
this assertion.

3. The existence of extreme points
As a first application of Theorem 2.1 we shall give a simple proof for the exist-

ence of the extreme points. For this, the following propositions will be necessary:

Proposition 3.1 Let Co U denote the convex hull of the curve U= {u(t): t€[a, f]}.
Then

]
CoU = {r = f u(t)de(1): cENBV [, B], fda(!) = 1}.
Proposition 3.2 [4]. Each réCo U can be written as a finite convex combina-
tion of points of U.
Theorem 3.1. If V(b) is nonvoid, then it has an extreme point.

Proor. Let o€V (b). It is clear that if 6=0¢V(b), then ocext ¥V (b). There-
fore we can assume ¢=0. In this case ¢(f)=0 and, by virtue of Proposition 3.1,
the vector (1/o(p))r, where r is defined by

g
r= fu(t) do (1)

belongs to Co U. From this we get by Proposition 3.2 that this vector may be ex-
pressed in the form:

(/o (B)r = g"l o u(k),

K
where ¢;=0, 1€[a, f] for i=1,2,...,k and 3 g;=1. Let A denote the (m, k)
i=1
matrix which has the column vectors u(2,), ..., (%), and let us consider the equation
3.1 Ax+Ey = b.

It obviously has a solution, namely the one defined by x=(a(p)e;, ..., a(B)0t),
y=b—r. A classical theorem of linear programming states, that it has then an
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admissible basic solution as well. Let (g, w) be an admissible solution of (3.1),
and let us now define o by

where gy, ..., 0 mean the components of g. This (o, w) evidently presents an
admissible basic solution of (1.1). Therefore by Theorem 2.1 and by Corollary 2.1
our assertion is proved.

4. The maximum of linear functions

If a real valued linear function, defined on a closed convex linefree subset
of a finite dimensional Euclidean space, achieves its maximum, then it achieves
this maximum at least at one extreme point of the convex set. We shall prove the
same statement for the linear function defined on V(b) by

B
?(0) = j w()da(l),

where @: [o, f]—=R is an arbitrary fixed continuous function.

Theorem 4.1. If @ achieves its maximum on V (b) then this maximum will be
attained at least at one extreme point of V (b).

Proor. Let H(b) denote the set of all a€V(b), for which the maximum of &
will be attained. By our assumption H(b) is nonvoid. On the other hand H(b) may
be regarded as the set of all 6€NBV, [o, f] satisfying each of the inequalities

[4

4 B
[ u@®de()=b, [ w@do()=¢, [—a(ddo()=-¢,

where ¢ means the maximal value of @ on V(b). Thus, applying Theorem 3.1, we
obtain that ext H(b) is nonvoid. Using the extreme property of the elements of
H(b) it is easy to see, that ocext H(b) implies ocext V(b). This completes the
proof.

Remark 4.1. The above statement and Theorem 2.1 imply that the problem
of finding the maximum of @ on V(b) may be reduced to the problem of finding
the maximal value of @ on a subset of V' (b) consisting of all step functions with a
finite number of jumps. A specialisation of this fact was essentially used in [1] to
construct an algorithm for the approximative solution of the Chebyshev—Markov
problem.
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