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Abstract. Some properties of Banach spaces of type @ are established, where & denotes an
Orlicz function. The relationship between the law of the iterated logarithm and the type of the
Banach space is examined.

1. Introduction

The concept of a Banach space of type p plays an important role in studying
the law of large numbers and the central limit theorem in Banach spaces. It turned
out that a refinement of this concept was needed to treat the law of the iterated
logarithm (LIL) in Banach spaces (see [6]). In [6] the LIL has been examined in
Banach spaces of type @, where @ is an Orlicz function. The notion of type @ has
been introduced by LAPRESTE [S]. (For a systematic study of Banach spaces of type
@ see e.g. [1] or [2].)

The aim of this paper is to supplement the work of Lepoux [6]. In [6], LEDOUX
used a more restrictive concept of type @ (property @ in our terminology, see Defini-
tions 2.4 and 2.7) than ours and considered only those cases for which conditions
(2.6) and (2.7) are satisfied. We do not use (2.6) and (2.7) and property ®.

We prove that in Banach spaces of type @, the LIL holds true under classical
moment conditions (Theorem 4.1). This result formally is the same as Theorems 1
and 2 of [6] but our preconditions are weaker than those of [6]. Moreover we show
that type @, is really weaker than type 2 and stronger than type p for p<2 (Ex-
ample 3.3). On the other hand we prove that the LIL implies that B is of type @
for some function @ (Theorem 4.2).

Section 2 is devoted to the definition of type @. From the different possible
definitions the weakest and most simple one is adopted (Definition 2.4). In Section 3
the Banach spaces of type @ are characterized by means of random vectors. Sec-
tion 4 deals with the LIL.
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2. Basic definitions and preliminary results

Let B be a real separable Banach space with norm |.|. We suppose that B is
equipped with its Borel o-field. Let (Q, F, P) be a probability space. A measurable
function X: Q-B is called a B-valued random variable (r.v.). EX stands for the
Bochner integral of X. (e,) denotes the sequence of the Rademacher functions
(&1, &, ... are independent r.v.’s with P(e,=+1)=1/2 for all n). The abbrevia-
tion “a.s.” means “almost surely”. y, stands for the indicator of the set 4.

Let us introduce the following notation

C(B) = {(x)EB=: 2-’ g;x; converges in probability},
i=1

where B> denotes the set of B-valued sequences. Denote by /,(B) the /,-space of
B-valued sequences.
The Banach space B is said to be of type p (1=p=2) if

.1 1,(B) S C(B).

It is well-known that B is of type p if and only if there exists a finite positive
constant 4 such that

@2 E(| 3 oxp = 4 3 (i)

for every n and x,, ..., x,€B.
We shall extend properties (2.1) and (2.2) with the help of an Orlicz func-
tion .

Definition 2.1. A function @: [0, «)—~[0, =) is said to be an Orlicz function
if it is continuous, convex @(0)=0, ®(t)=0 for r=0 and }im @(t)=e. An

Orlicz function @ is called a Young function if T:ing @(1)/t=0 and lim @(1)/t=oo.
— [+

We remark that Young functions play an important role in several parts of
probability theory, see e.g. [12] and the literature cited there.

An Orlicz function @ is said to satisfy the 4,-condition (®~4,) if there exists
a constant ¢>0 such that

(2.3) P(21) = c®P(1)

for every t=0. We shall say that @ satisfies the 43-condition if there exist con-
stants ¢=0 and 7,=0 such that inequality (2.3) holds for every 0=r=¢,.

Definition 2.2. For an Orlicz function @ the Orlicz space Il4(B) consists of
those B-valued sequences (i, Uy, ...) for which 3 @(|u;|/a)< o= for some 0<a<oo.

i=1
I4(B) is a Banach space with the Luxemburg norm defined by

I)izalle = inf {a: 3 &(lul/a) = 1}.
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If @ is a Young function then (Lg(B),|.|l.,) denotes the Orlicz space of
B-valued r.v.’s equipped with the Luxemburg norm:

|X|L, =inf{a: E&(|X]|/a) = 1}.
The Orlicz space of real-valued sequences (resp. r.v.’s) will be denoted by /g (resp. Lg).

Remark 2.3. Let @ be a Young function. It is well-known that on the spaces
lg and Lg one can introduce the so-called Orlicz norm which is equivalent to the
Luxemburg norm (see [3], [8], [9])-

According to Theorem 10.5 of [3] the Orlicz norm can be calculated by the

formula
N
1Xl, = inf = {1+E@(kIX]}.

An analogous formula holds in the space /g, too.

Definition 2.4. Let @ be an Orlicz function. The Banach space B is said to be

of type @ if
Io(B) € C(B).

Remark 2.5. 1. Type @ depends only on the behaviour of the function @ in
a neighbourhood of the origin.

2. If Iy, S1ly, then type @, is stronger than type &@;.

3. It is necessary for the existence of a space of type @ that [,E/,.

Theorem 2.6. Let & be an Orlicz function with ®~A4Y}. The Banach space B
is of type @ iff there exists a positive constant A such that

(2.4) E(lg': ex]) = ARl
for all (x;)i=,€C(B).

For the proof see [1]. We remark that it is sufficient to require condition (2.4)

only for finite sequences (x;)}.;.
If we generalize inequality (2.2) with the help of @ we get a stronger concept
than that of type @.

Definition 2.7. The Banach space B is said to satisfy property @ if there exists
a constant A4 such that

(2.5) quzjl gxi|) =4 ; 2; D (|x,])
for every n and x,, ..., x,€B.

Proposition 2.8. If B satisfies property @, then B is of type ®.

ProOF. Let (x;)i=,€/s(B). Then there exists a=0 such that S’ @ (|x;l/a)<ee.
For an arbitrary >0 there exists n, such that i=1

i;;cb[Ti] eI 3 for m=>n=>n,.

i



68 Istvin Fazekas

o2

By the Markov inequality

From (2.5) we have

82
Za— =A—=¢ for m=>n=> n,.
i A {3
i=n

Suxf)-g= s

P{ 3 &x| = ad~'(e)} = P{¢[
i=n =n
Therefore the series 2' g;x; is Cauchy in probability so it is convergent in prob-
ability.
Generally speaking the concept of type @ is weaker than that of property @ as
the following example shows.

Example 2.9. Let
¥ Jor-U=y=1-

P(x) :{ 5

x2 for 1=nx.

Then (x,);=.€/e(B) implies that _Z |x;] <ee. Therefore Z g,X; converges in
probability because every Banach Splace is of type 1. So every Banach space is of
type @.

On the other hand, let B satisfy property ®. Let x,,...,x,6B and let K=0
such that m‘in |Kx;|=1. Then

P(E |§1 & Kxi) = Ed’(lé; s Kx)|) = 4 ;21 @(|Kx;)).

Therefore
KEI,;; 8;«\'[[ =o71(4 ;é; ?(|1Kx)) = VZK(;'; (lx)2)2,

that is B is of type 2.
If type @ implied property @, then every Banach space would be of type 2.

Remark 2.10. In [6] it is proved that the notion of type @ and that of property
@ are equivalent if the following conditions are satisfied. There exist constants y,
and y, such that

(2.6) NEP(X]) = @(|X|L,) = 7.EP(X])
for every X€Lgy(B) and

@.7) n 3 o) = @(lxle) = 72 3 0(lxi)

for every x=(x;)iZ,€/p(B).

However, it is an open question which functions @ satisfy conditions (2.6) and
(2.7). It seems that this question is related to the definition of the norm in Orlicz
spaces. It is known that Orlicz spaces cannot be normed analogously to L” spaces
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[11]. Therefore one can conjecture that conditions (2.6) and (2.7) are satisfied only
for a narrow class of functions @. In particular, (2.6) and (2.7) are not fulfilled for
functions &, which play an important role in the LIL.

Example 2.11. Let =0 and let @, be an Orlicz function for which

7 {Iz[L,(I/f)]", in a neighbourhood of the origin;
$OT A0 ik neighbowtiood of the filiniiy,
Here Ly()=L(L(t)) and L(t)=logt for t=e and L(t)=1 for 0=t=e.
Then (2.6) and (2.7) are not fulfilled even in the case B=R (=the set of real
numbers). To see this one can put X=ry, in (2.6) and x=(s,s, ..., s, 0,0, ...)

in (2.7).
In the following we shall not use the concept of property @ and conditions (2.6)
and (2.7).

3. Properties of spaces of type @

First we describe the type of the Orlicz space /gp.
Proposition 3.1. Let & be a Young function for which ®(Vx) is concave and
D(xY)=cP(x)P(y) for x,y=0. Then ly is of type P.

Proposition 3.2. Let ®, and ®, be Orlicz functions. If lo,Elp,, then lg, is
not of type @,.
For the proof see [2].

Example 3.3. Let a€(0, 2). There exists a Young function @, for which

x*[Ly(1/x)]*, for 0 <x<a;
x2, for x=05>

@.09 =]
(where @ and b are suitable constants) and which satisfies the conditions of Prop-
osition 3.1. Therefore the Orlicz space /,_ is of type @,. But, by Proposition 3.2,
it is not of type 2 and not of type @, for f<a.
So type 2 is “better” than type @, which is “better” than type @, for f<a.
This example plays an important role in the LIL.
In the sequel we shall deal with independent r.v.’s in spaces of type @.

Theorem 3.4. Let @ be an Orlicz function, ®~A43. B is of type @ iff there
exists a constant K=0 such that

E| 3 X| = KEIXX-ilo

for every n and every independent B-valuedt.v.’s X,, ..., X, with EX;=0 (i=1, ..., n).

For the proof see [1].
The following lemma is a generalization of Proposition 5.1 of Pisier [10).
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Lemma 3.5. Let ® be a Young function. Suppose that
N
ELZ; Y| = || ¥,

for any independent identically distributed (i.i.d.) symmetric bounded B-valued r.v.’s
Y, ...y Yy, where 1=a<oo, Then for every Xx,, ..., XyEB

E(I Z & x;) = 20 [|(x)M 1l oy
where ‘?n(x):% d(x).

Proor. This result can be derived in the same way as the above mentioned
proposition of Pisier. We notice only that in the first step of the proof one has to
use the following equality

1Yl = lI(x) 1“«:--.;

if the distribution of ¥, is —— N 2‘ (05 10-2)
i=1
Banach spaces of type @ can be characterized with the help of i.i.d. r.v.’s.

Theorem 3.6. Let @ be a Young function, ®~A4%. B is of type ® iff there exists
a constant A such that

N
(3.1 E |:Z; Y| = Al px
for every N and every i.i.d. B-valued r.v.’s Yy, ..., Yy with zero mean, where ®"(x)=
=N®(x).

ProoF. a) Let B be a space of type ®@. According to Remark 2.3
gacii: }
¥l zgn = inf - {1+E®" (k|¥3])}.

Therefore for an arbitrary £¢=>0 there exists a k, such that

1
(3.2) [¥ilign = {1+ E®" (k. [¥,D} .
On the other hand ‘
(3.3) 1Y:(@)ille = mf {1 + Z @ (kY (w)|)} =

= ki,{ + 2 ok K@)
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Using Theorem 3.4 and incqualities (3.3) and (3.2) we get
N 1 N
E| 2 Y| = AEI®)ile = 47 {1+ 3 EO(k, ¥} =
= . -
1
= A+ {1+ NE®(k,|Yi])} = A(IYillgn+8)-

Therefore inequality (3.1) holds.
b) Suppose that inequality (3.1) is satisfied. The Lemma 3.5 implies

E( 3 ax)) = 24169-ile

for every N and Xx,, ..., xy€B. So B is of type .

4. The LIL in Banach spaces of type &

In this section X, X, X,, ... are ii.d. B-valued r.v.’s and as usual S,=
=X,+...+X,. Let a,=V2nL,n, that is g, is the classical normalizing constant
in the LIL. We shall say that X satisfies the bounded LIL (X€BLIL) if

P{limusup |S,l/a, <=} = 1.

We shall say that X satisfies the compact LIL (X€CLIL) if there exists a non-
random compact set DEB such that

P{d(S,/a,, D) ~ 0} = 1
and
P{D = C(S,/a,)} = 1,

where d(x, A) denotes the distance of the point x from the set 4 and C(x,) denotes
the set of limit points of the sequence x,.
In the following theorem let @, be the Young function defined in Example 3.3.

Theorem 4.1. Let E|X|*<e< and EX=0.
1. If B is of type ®,, then X€BLIL.
2. If B isof type ®, for an a<1, then XcCLIL.

Remark. Lepoux [6] proved this theorem for Banach spaces satisfying property
@, (resp. @,).

ProOF. According to KuUeLes [4] it is sufficient to prove that in the first case
E|S,l/a, is bounded and in the second case E(|S,l/a,)—+0 as n—<. Because B
is of type &, we have

E|S,| = 4AE||(X){-1lo,-
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By Remark 2.3 we have
@.1) OO, = jnf { (1+ 3, kixn)}.

i=1
Putting k=(n(Lyn)*)~1* into (4.1) we get
(4.2) E|S,| = A(n(L,n)’)”g{l+nE¢ (|X|/(H(Lgn)“)”")}
For the sake of brevity let u=|X|/(n(Lyn)*)"/2. Then
4.3) Ed,(u) = Eypuzpy Pa() +Eyp>u>ay Po() + Eppusay o (u) =
= Ev®+®,(b) P(b > u > @)+ Ey(y=qy P, (u) = Eu?+ P,(b) E(1?/a*) + Eypy =y Pa (1)
The last term of expression (4.3) is

Eyys 0u(0) = E{x{u al |X|2 [[n(L,n)u)lzz]a}-

(Lgﬂ)“ |X]
x\1/2
This expression is bounded from above by £’-f—- if n %%:% Other-

y 1 1 1 "
wise = so Ed (u)=9, [?]=?(L,n) .
Using these facts, (4.2) and (4.3) imply that

EISul §A(n(L,n)’ 1’2{1-1-}1[5]:'[24- @,(b) EIXI2+ |X|8 (L2 )z]}

a* n n

= A(n(Lyn)*)'*K.
So E(|S,|/a,) converges to zero if a<1 and it is bounded if a=1.

Remark 4.2. In [7], LEDoUux and TALAGRAND have proved the BLIL under the
conditions E|X|*/Ly(|X|)<-<o, Ef(X)=0 and E|f(X)|>*<e< for every fEeB* (=the
dual space of B). It is an interesting question whether these moment conditions
imply the BLIL in Banach spaces of type @ for some Orlicz function ®.

We shall prove that the BLIL implies that B is of type @ for some Orlicz func-
tion @. Let ¥ be a Young function, ¥~4,. Suppose that Ly,SL,. Introduce
the notation

LY (B) = {XcLy(B): EX =0, E|f(X)]?) <= VfEB*}.

Then (L$*(B), | l.,) is a Banach space.

Theorem 4.3. Let ¥ be a Young function such that W~A4, and LySL,. If
every X€L%*(B) satisfies the BLIL, then B is of type @, where ®(x)=x*|log x|**?
in a neighbourhood of the origin, where 6=0.

PROOF. Let
N(X) = sup - E15

and
M = {X: N(X) <<).
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Then (M, N) is a Banach space. According to Proposition 2.2 of [10] if
|S,|/a,<< a.s., then E(sup |S,|/a,)<-<=. Therefore the assumptions of our theo-

rem imply that L$*(B)S M. By the closed graph theorem
|
sup —E|S,| = 4[| X,
By Lemma 3.5
(4.4) Elfz; & xtl = 24a,[|(x)i-1llw,

for every x, ..., x,€B. Let b, be an increasing sequence and let

S b (|x) 2 @ (|x))
A = |je{l, 2, ..., n}: @1 %—-— x| < @1 b— i
k+1 k

Denote by |A%| the cardinality of 4. Then

Soau= 3 Sotxh= 3 3o,

k=0 jeAp bu-x i=1

which implies |4} =by.,.
From (4.4) we get

@9 E|Zax|= ZE| Zox|=24 3 anledealy g =
3 o ()
=24 Z Aapl =11y ‘P—l(l) lTlax xil = e A 2 ¥ bk+1L2(bk+1)¢_1 - b;; p

In the fourth step we replaced all of the |x;|-s by their maximal value and calculated
the Luxemburg norm in this special case.
Let (x;)€/s(B). Then @~4, implies that for every £¢=0 there exists an N,
such that
n
2P(x])=¢ for n>m=>N,.
i=m

Therefore, by (4.5),
“5) E| 3 ox] =4 3 VLo~ (1)

for n=m=N,. Put b,=¢/(a* |log a*|**+?), where 6 =0 and a=e~". Then tP‘l(s/bk):_a*,
so it can easily be seen that the right hand side of (4.6) is not greater than JeK,
where K is a constant not depending on &.

So (x))€lp(B) implies that the series g'afxi is convergent in L,, therefore
B is of type @, b=l
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Remark 4.4. a) Theorem 4.3 remains true also for those Young functions ¥
for which Ly 2L, (e.g. ¥(x)=x%Ly(x) in a neighbourhood of infinity).

b) It is an interesting problem whether the BLIL (or CLIL) imply a better type
of the underlying Banach space than the type given in Theorem 4.3.
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