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Introduction

According to the basic intuitive background of information theory, a com-
munication system can be illustrated by Shannon’s famous blockdiagram shown
on Fig. 1.

Source |[— Encoder Channel |——| Decoder Destination

Fig. 1

The source and destination can be separated in space or time and the channel
is destined for bridging over this separation. The terminology of the model shown
on Fig. 1 reflects the point of view of communication between terminals separated
in space. But, according to a widespread view, these models are equally suitable
for describing data storage systems appropriately interchanging the roles of time
and space ([1]).

The theoretical treatment of the transmission of information dates back to
HARTLEY (1928). The basic concepts of information theory are due to SHANNON
(1948). Since then the following technical developments came into being affecting
both the telecommunication and the data processing systems a) the realization of
astronautics, b) the appearance of the electronic digital computers, c¢) the wide-
spreading of microprocessors and other integrated circuit (IC) chips such as Random
Access Memories (RAM), Read Only Memories (ROM), programable communica-
tion interfaces, etc. (obtainable all in specialist shops®).

Now, we can speak not only theoretically but also practically about the case
when the source and destination are separated both in space and time. Indeed, this
situation occurs by the telecommunication with a satellite which runs along an
orbit far from the Earth. This shows that rhe separatedness of the source and destina-
tion in space or time is irrelevant from the point of view, whether a communication
system is a device of data storage or else it is a device of transmission of information.

') See e.g. Intel Component Data Catalogs.
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Several natural or artifical systems are able to emit information. Every known
natural source emits continuous signals.?)

The whole mathematical discipline of information theory refers to the artifical
case where the source emits discrete signals from a set, the source alphabet. Simi-
larly, the channel is supposed to be capable of transmitting successively symbols
from a given set, the input channel alphabet. The output alphabet of the channel
may differ from the input alphabet of the channel. In the ideal case of a noiseless
channel the output is identical to the input. The information theory is a statistical
theory of communications studying the problem of reliable transmission of infor-
mation at a possibly low cost for given source, channel and fidelity criterion ([1]).
Thus, the noiseless channel is the trivial case from the point of view of information
theory.

The telegraph was the first practical realization of the discrete channel. The
importance of the discrete channel is emphasized by the fact that there are used
discrete channels also in the modern digital computers.

But, it is an essential difference between the two kinds of transmission of infor-
mation. Namely, if the channel is not noiseless in a computer then the computer
is of no use since, as it is known from the programing of computers, the alteration
of a single bit can ruin the whole program. Thus, the information theory is unappli-
cable in our modell since the noiselessress of the channel must be a starting requirement.

Therefore, we try develop deterministic models of communication systems.
Presently, we deal with the problem of transmission of information. ([4] deals with
memory expansions.)

Preliminaries, denotations

Automata. By an automaton A=(S, X,d) we mean a finite automaton with
state set S, input set X and transition function d: SXX-S. The symbol J as well
as the extended transition function 6* will be used here mainly in case of danger
of misunderstandings. We shall write sp instead of 6*(s, p) (s€S, peX¥).

By a product of automata we shall mean always a generalized product in-
troduced by F. GECseG ([5]).

Definition A. By the product of automata A;=(S;, X;,d,) (i=1,...,n) with
respect to an alphabet X and a mapping

(1) ¥: 8§ X.. XS, XX - X7 X... XX7,

we mean the automaton A=(S, X, 6) where S=S,X... XS, and é[(s;, ..., 5,), X]=
=(Slpl: LT snpn)! where XEX,

(Sls ceey SI!)GS and (pls --an) e Q(sh vers Sy x)°

) Except for the following neutrino event: “On February 23rd. 1987, a handful of neutrino
particles were detected from Supernova 1987 A in the Large Magellanic Cloud... they brought
us direct evidence of the violent conditions at the very heart of the tremendous catalysm some
160 000 light-years away. The observations represent the first neutrino detections from a known
extre terrestrial source: a point source in another galaxi — the supernova™. See May, 1987, Sky &
Telescope.
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The product A is denoted by A=(A; X... XA,) [X, ¢]. The product (A; X ... XA,) [X, ¢]
will be called a GluSkov product of automata A,, ..., A, in the special case when

q’: SlXoc-XSnXx*XIXl--Xxnn D

Partitions. By a partition P of a nonempty set S, it is meant a set of nonempty,
disjoint subsets of S of which union covers S. The set of all partitions of S will be
denoted by PART (S).

Every partition P of S can be generated by means of an appropriate surjective
function fp: S—H in the following sense. Any block of P is the inverse image of
an heH: P={B,SS|B,=f;'(h), hcH} where f; is the inverse of fp in the
sense that s€f, '(h)<fp(s)=h.

The mapping fp is called a generator function of the partition P. If v=|P|
is finite, we choose H=I,={0,1,...,v—1}.

Theorem P1. Let f: S—+H, and g: S—~H, be surjective functions. Then f and
g generate the same partition P iff there exists a bijective map ¥: H,—~H, such that

g=¥(NH & ((3)
Definition PI. The product P-Q of P, Q¢PART (S) is defined by
2) P.Q = {B=KNL|(K, L)ePXQAKNL #0}. 0O

Theorem P2. With respect to the product (2), PART (S) forms an idempotent,
commutative semigroup with I={S} as unit element. |

We denote by FPART (S) the set of all finite partitions of the set S. A finite
subset of FPART (S) is called a core on S.

Theorem P3. If P, ..., BEFPART (S) then
max {|B], ..., |B} = |+ ...- B = |Rl-...-|Bl. 1

The set of all cores on S will be denoted by CORE (S).
Definition P2.

(i) The core C={R, ..., B}€CORE (S) is said to be independent if |F,...P|=
=|A|-...-|R]

(ii) By the volume of the core {PR,..., B}J¢CORE (S) we mean the product
P -...- PEPART (S).

(iii) By the size of the core C={R, ..., B}J¢CORE (S), we mean the cardinality
of the volume of C. If |C| denotes the size of C then we have |C||=|A-...- B)|.

(iv) Let C,, C,€CORE (S). C, is said to be independent of C, if C,UC, is inde-
pendent and C,NC,E{I}. O

Theorem P4. For all C,, C,6 CORE (S) the inequality
IC,UC| = |Gl - ICel
holds moreover, if C, is independent of C, then the equality

ICGUGC] =[Gl - |Cel
isvalid. |
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Remark PI. 1t is easy to proof the following statement:

Let f;: S—=H,, ...,f,: S—H, be some generator functions of the partitions
B, ..., BEPART (S), respectively. Then a generator function of the volume
P -...- B, of the core {P, ..., B} is the vector valued function f: S—H for which
Vs€ES:

£(s) = (i(5), .. £,(8))EH S HyX...XH,. |

A partition Q of a set S is known as a refinement of the partition P of S if
every block of Q is a subset of some block of P.

Proposition P1. I/ Q¢FPART (S) is a refinement of PEFPART (S) then
|P|=|0| where the equality holds exactly in case P=Q.

Proor. Since P, Q¢PART (S), if Q is a refinement of P then any block of
P covers at least a block of Q and so, |P|=|Q| is clear. Now, if here |P|=|Q|
then any block of P agrees with a block of Q. Thus, P=Q. The inference P=Q0=
=|P|=|Q]| is trivial. [

Memories. As mentioned above, according to the basic concept of the informa-
tion theory, the unique distinction between transmission and storage of information
is the separatedness of the source and destination in time or space. But, we showed
that the separatedness of the source and destination in time or space, practically
seems to be an unessential distinction. Moreover, we will not introduce the notion
of time and space in our theory. Therefore it is meaningless to speak about separated-
ness in time or space in the framework of the present model.

Definition M1 ([3]). By a memory M, we mean a triplet M=(S, C,s) where
S is a nonvoid set, C is a set of some partitions of S and s is a variable on S. S is
called the set of possible states, the current value of s is the instant state of M. C is
called the core of M and any partition P€C is said to be a memory cell of M. It
is supposed, that the blocks of the partition P are indexed with the elements of
some index-set Ip. (If P is finite, we can choose Ip={0, 1, ..., |P|—1}.) Thus, we
can write P={B,|vélp}. The content of the memory cell P depends on the instant
state s: The content of P at state s is the index of that block of P which contains s.
The memory M is finite if C is a finite set of finite partitions of S. O

We showed in [3] that the above notion is a faithful abstraction of the memories
used in the practical computer technics.

It is well known that the information cannot spread in itself. In practice, the
information is carried always by some material or energy. If the information is
carried by discrete signals, then a memory, which is capable to store these signals,
may be regarded also as a carrier of information.

Thus, the memory and the channel are two aspects of one and the same thing
and we can describe the channels by means of the same mathematical tools as the
memories are described.

Definition M2. The set of all memories over the set S will be denoted by

MEM (S):
3) MEM (S) = {M = (S, C, 5)|0 = C c PART (S)}.
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Although a memory is not a set, we define the set theoretical operations in MEM (S).
For M;=(S,C,;, s) (i=1,2) let

4) M,UM, = (S, C,UC,, s), union of M; and M,,
(5) M,NM, = (S, C,NC,, s), intersection of M, and M,,
(6) M,cM,oC,cC,, M,is anextension of M;. O

We shall suppose tacitly that any core contains the improper partition /= {S}
even if / is not indicated between the elements of C in one enumeration. Thus, the
intersection of memories exists always since in this way, the intersections of the
cores will be never empty.

If PEC is a memory cell of a memory M=(S, C,s) then the memory
P=(S, {P},s) will be called a register of M. The content of the register P at state
s will be denoted by (P), and per definition, it agrees with the content of the cell
P at 5. Thus, e.g. the improper register I=(S, {/},s) contains always the zero:
(I);=0 forall s€S (or (I), is equal to another fixed element according to the chosen
index set Iy which in consequence of /={S}, can be a singleton only). So, the
improper register is unsuited for storage or transmission of information.

The notion of content can be defined not only for registers but also for the gen-
eral memories.

Definition M3. Let M=(S, C, 5) be a finite memory on S.
(i) The volume of the core C will be called the vector cell of M.
(i1) Let a generator function f: S—H of the vector cell of M be fixed. We shall
say that f is the generator function of the memory M.
(iii) The content of the memory M at state s will be denoted by (M), and defined by
the equation
@) M), =1(s) Vs€S. O

Remark M1. If we know the content of the memory M then we know the con-
tent of every single register of M too. Namely, according to Remark P1 and Defini-
tion M3, the generator function of M can be written in the form

@®) £(s) = (/1(5), ..s /u(5))

where f;: S—H, is the generator function of P (i=1,...,n) and C={R, ..., B}.
Thus, we have VYs€S:

©) ®),=fi)eH; (i=1,....n). §

Theorem M1. Let M, and M, be finite memories on the set S. Any content of
M, can be exchanged for any possible content of M, in such a way that the content
of My remains unchanged, iff the core of M, is independent of the core of My. |

All the results of this introductory chapter are proved in [3] or they are im-
mediate consequences of the results given in [3].
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1. The refinement of memories

If M,cM; holds for some memories M,, M,¢ MEM (S) then we say that
M, is an extension of the memory M,. In this chapter, we shall deal with another
kind of increas of memories. Namely, we can obtain a memory M, with larger
storage capability as the memory M, by means of the refinement of the memory
cells of M;. We shall speak in this case about the refinement of the memory in the
sense of the following definition.

Definition 1.1. The memory M,=(S, C,, s) is said to be a refinement of the
memory M, =(S, C,, s) if there exists a bijection ¢: C,—~C, such that for all
PeCy, @(P) is a refinement of P. Moreover, if there exists a P€C,; such that
|P|<|p(P)| then we say that M, is a proper refinement of M,.

Definition 1.2. We shall denote by FMEM (S) the set of all finite memories
on S. We say that the memory M is independent (in itself) if the core of M is in-
dependent.

Proposition 1.1. The refinement of memories is an ordering relation on
FMEM (S).

Proor. Clearly, the refinement is reflexive, since any memory is a refinement
of itself. Let M;=(S, C;, s)EFMEM (S) (i=1,2,3) be memories such that M,
is a refinement of M, and M; is a refinement of M. We have to show that M; is
a refinement of M. There exist bijective mappings @,5: C;~C, and ¢,,: C;—~Cy
such that Y PeC,: ¢,,(P) is a refinement of P and YV Q€C,: ¢a(Q) is a refine-
ment of Q. Let the mapping ¢,5: C;—~C; be defined by @3(P)=@as[¢@12(P)].
We see that any block of ¢,4(P) is covered by a block of ¢,,(P) which is a subset
of some block of P. This shows that M, is a refinement of M, and the refinement is
transitive. Let M, be a refinement of M, and M, be a refinement of M. We shall
show that M,;=M,. There exist bijective mappings @,,: C;—~C, and ¢, : C;—~C,
such that VY PeC,: ¢,,(P) is a 1efinement of P and VQ€C,: ¢4 (Q) is a refine-
ment of Q. Thus, by Proposition P1, we have

(1.1) VPEC,: |P| = |g1e(P)

and

(1.2) VOeC,: Q] = |91(0)].

It follows from (1.1) and (1.2) for the mapping ¥ =@y ¢y3: C,~C;:
(1.3) |P] = |@12(P)] = |9a1[012(P)]] = |921012(P)] = ¥ (P)I,
whence by induction, we get for all k=1, 2, ...

(1.4) |P| = W*(P)

where Y'(P)=y/(P) and Y+Y(B)=y [y (P)]if i=0. If for some F,, the inequality
| Byl <|@12(Fy)| holds, using (1.3), we obtain |F|<|y(R) and whence

Bl <= W (o)l = WV (BRIl = W (Rl
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and by induction, we get
(1.5) [Pl < W Rl k=1,2,....

Now, we shall prove that M, cannot be a proper refinement of M,. Suppose, in
contrary, that M, is a proper refinement of M,. Then, by Definition 1.1, there
exists a R<cC; such that |P|<|@,s(R). Then the inequality (1.5) holds for all
natural numbers k. On the other hand, y: C;—C,; is a permutation on C, and so,
there exists a natural number m such that

(1.6) y"(R) = K.

thus, for k=m, (1.5) contradicts (1.6). This shows that M, cannot be a proper
refinement of M, and so, M,=M,. §

Definition 1.3. If M, is a refinement of M, (M,, M6 FMEM (S)) then we
shall write M, =M,. If M, is a proper refinement of M, then we write M;<M,. 0O

Definition 1.4. By the size |[M| of the memory M=(S, C, s)eFMEM (S) we
mean the size of its core. Thus, if C,={P, ..., B} then

(1.7) M| =|C| =IA-...-R|. O

Theorem 1.1. Let M,;, M,cFMEM (S) be some memories where M, is inde-
pendent.

() If MycM,; then |M,|<|M,].
(i) If My<M, then |M,||<|M,|.

Proor. (i) Since M, is a proper extension of M;, the core of M, can be written
in the form C,=1{B, ... B, O s O Where Ci={B, ..; B} s the core of
M, . Here

(1.8) I@]=>1 forall i=1,...m

since the partitions Q; are those elements of C, which are not elements of C; and
the improper partition /= {S} is an element of C, according to our former agree-
ment. Thus, on the basis of Theorem P3, by Definition 1.4, Definition P2 (i) using
the independence of M, and (1.8), we get

Ml = Gl = 1B+ .. B = |B] ... B <
<IBl-ecc |BI1Qs)  coe - Ol = |Biv e By Oy - o - Ol = ICall = M)

(ii) Since M, is a refinement of M, there is a bijection ¢: C,—~C, such that
for any partition P€C,, ¢@(P) is a refinement of P. If C,={P, ..., B} then let
0;=0¢(P) (i=1,...,n). Then C,={0,....,0,} and according to Proposition P1,
we have

(1°9) |IJII = IQI’I i= 19 weny 1L

Since M, is a proper refinement of M,, on the basis of Definition 1.1, there exists
at least a jcr{, ...,n} for which

(1.10) 15l < 1l

6 D
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Thus, using that M, is independent, by Dexnition 1.4, Definition P2 (i) and (iii)
applying Theorem P3, it follows from (1.9) and (1.10) that

IMy| = IGsll = P+ ... Bl = |Al- ..o |B] - oo - Bl <
< Qi+t Q5+ oo+ 1Qu] = ICll = M. W

2. The storing capacity of the memory and a characterization of that

We defined the storing capacity of finite memories previously as a mapping
cap: FMEM (S)—~R, such that

(2.1) cap (M) = log, |[M]|

where ||M]|| is the size of M. This definition coincides with the practical notion of
the capacity if the memory is an independent union of one bit memory cells. How-
ever, not any memory is independent even if it is used in practice. For example,
the memory of a microprocessor is not independent generally since the content of
the Aagregister depends on the content of some other registers (see e.g. [6]). Thus,
neither a software nor a hardware specialist can give a satisfactory exact answer
for the question: how much is the storing capacity of a microprocessor? Using
the formula (2.1), we can give an exact answer but, it will be unsatisfactory if we re-
commend (2.1) without any plausible theoretical justification. We gave the follo-
wing characterization in [3]:

Theorem M2. If cap (M) is defined as an additive, normed function of M which
is monotonic relative to the size and the size is monotonic relative to the capacity then

(2.1) is valid for cap (M). }

Professor Z. DAROCZzY remarked that a such characterization would be of more
interest which does not rest to the notion of the size, just on the contrary, the size
would be one of inferences of the characterization!

Our next result goes toward this direction with one step. Though, we cannot
eliminate the size from the characterization, but as it will be shown, the condition
“the capacity is monotonic relative to the size” may be omitted.

The meaning of the remaining condition concerning the size is that any en-
largement of the storing capacity goes together with the enlargement of the size.
In the light of Theorem 1.1, this condition seems to be plausible since, this theorem
asserts that the enlargement of the capability of the storage in important cases goes
together with the enlargement of the size.

We deened a definition and a lemma.

Definition 2.1. Let X be an arbitrary nonvoid set and ¥;, Y, be ordered sets.
A function g: X-Y, is said to be monoton increasing with respect to f: X-Y; if

VX, X€X70 f(xy) < f(x2) = g(xy) < g(x3)
(see [3]).
Lemma 2.1. Let X be an arbitrary nonvoid set and Y,, Y, be ordered sets such
that Y, is totally ordered. If g: X—Y, and f: X—Y, are surjective functions such
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that g is monoton increasing with respect to f then there exists a monoton nondecreasing,
surjective function J: Y,—Y, such that for all x€X:

(2.1) J(x) = A[g(x)).

Proor. Let y€Y, be given arbitrarily. It follows from the surjectivity of g
that there exists x€X such that y=g(x). Then, let A(y)=f(x). We see that A
is defined in such a way that (2.1) holds. It is remained to prove only that also the
other mentioned properties hold, but first at all that the definiticn of 4 is correct
in the sense that 4 is a (one valued) function. Suppose that for some y€Y, there
exist x;, x,€X such that y=g(x;)=g(x;). We show that f(x;)=f(x;). Indeed,
g is monoton increasing with rcspect to f and so, the contrary case f(x;)<f(x,)
or f(xp)=<f(x,) yields g(x;)<g(x,) or g(xy)=g(x;) contradicting g(x,)=g(xg).
Now, we show the surjectivity of 4. Let z€¥; be given arbitrarily. By the surjectivity
of f, there exists x€X such that z=f(x). Thus, according to the definition of 4,
for y=g(x)€Y;, we hawe Ai(y)=f(x)=z showing the surjectivity of A. Finally,
we prove that A is nondecreasing. Let w, v€Y, be given so that u<w. Let x;, x,€ X
be chosen so that u=g(x;) and v=g(x,). Then f(x,)=f(x,) since in consequence
of the condition that g is monoton increasing with respect to f, the contrary case
f(x))<f(x,) yields the false inequality v=g(x;)<g(x;))=u. Thus A(w)=f(x))=
=f(x)=4()." §

In order to guarantee the existence of arbitrary large memories, we shall sup-
pose that the set S of states is infinite.

Definition 2.2. By a normed measure of memories, we mean a function
u: FMEM (S)—R which is additive in the sense that for all M;, M,

(2.2) p(M;UM,) = p(M)+p(My)

holds if M,;¢FMEM (S) is independent of My FMEM (S); moreover p is normed
i.e. there exists a partition {S,, S;}€¢ PART (S) for which u[(S, {{S:, S.}}, s)]=1.

Theorem 2.1. If the storing capacity cap (M) of memories is a normed measure
such that any enlargement of the storing capacity goes together with the enlargement
of the seize then cap (M)=log, |M]|.

ProOF. In order to apply the lemma for our case, let X=FMEM (S), Y;=R.,
Y,=N where N is the set of natural numbers. Moreover, let the functions f: X—-Y;
and g: X—Y, be the functions f(M)=cap (M) and g(M)=|M|. Then the prop-
erty, that the enlargement of the capacity goes together with the enlargement of
the size, is another expression of the fact that the size is monoton increasing with
respect to the storing capacity. Thus, by Lemma 2.1, there exists a monoton non-
decreasing function A: N-C, such that

(2.3) cap (M) = A([M])).

Now, we shall show that 4 is a totally additive number theoretical function, i.e. for
which Yn, meN:

2.4) A(nm) = A(n)+ A(m).

Let n, meN be given arbitrarily. Using the infiniteness of S, we can easy construct

[
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partitions P, Q¢ FPART (S) such that |P|=n, |Q|=m and the memory M,=
=(S, {P}, s) is independent of M,=(S, {0}, s) (see [ ]). Using (2.3) and (2.2)
(which in consequence of the additivity of A(M)=cap (M) holds), we get

A(n)+A(m) = A(|M,|)+A(|M,]) = cap (M,) +cap (M,) = cap (M,UM,) =

Thus, 4 is a monoton nondecreasing totally additive number theoretical function,
whence on the basis of a theorem of P. ERDGs ([2]), we infer that A(n)=c logn.
Thus (2.3) can be written in the form

(2.5) cap (M) = clog |[M|.

Since the capacity is normed in the sense of Definition 2.2, there exists a partition
{S1, Sy} of S such that I=cap [(S, {{S:, S:}},5)]. Thus, by (2.5), we get
1=cap [(S, {{S:, S:}}, 5)]=c log [{S,, S;}|=c log 2. Whence c=1/log 2 and (2.5)
can be written in the form

cap (M) = (log [M])/log 2 = log; |M|. K
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