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Summary. In his paper [3] 0. Szisz gave a refinement of Hadamard® s celebrated inequality
for determinants with positive definite Hermite-symmetric matrices. A very simple and new proof
for the Szasz's inequality was given by L. Mirsky ([2]). The author disccovered that the procedure
of Mirsky can be used to prove more general inequalities, which are common source of some other
inequalities, As special cases, inequalities, which ard related to matrices, can be derived.

1. Definitions and theorems

In this section we give the necessary definition, and the general theorems with
proofs.

Definition 1.1. The set of numbers
(1.1) 8l ciwt) =0, 1B L= ..<lEn s k=] ..0
is said to be convex system if the inequalities
(1.2) j.-:.-g}.(_, a(j1s ooes Jam1) = @iy, ooy §y)

hold for k=2, ..., n, where (j,...,/x-1) runs over all combination of order k—1
without repetition of elements if,, ..., #,, and /=k-—1.
If (1.2) holds with reserve inequality sign, then the set of numbers a(iy, ..., iy)

is said to be concave system.
If (1.2) (or the reserve inequality) holds with /=k, then the set of numbers

a(iy, ..., i) is said to be quasi-convex (quasi-concave) system.
Let 1=i,<...<Ii, be integers. Let us introduce the following notation:

B(is i) = 2 @(j, i) (k=1,..,n),
Ji=<.=lJy
where (Jji, ..., /i) runs over all combination of order k without repetition of the

elements i, ..., 7,.
Let
(1.3) B =R(l,...n) (k=1,...,n).

The main results of the paper are the following two theorems.
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Theorem 1.1. If the set of numbers al(iy, ...,i,) is a convex (concave) system,

then the sequence
1

{Ptk - i

is increasing (decreasing).

Theorem 1.2. If the set of numbers a(iy, ..., i) is a quasi-convex (quasi-concave)
system, then the sequence

(P *’}1

is increasing (decreasing).

If we replace the numbers (1.1) with their reciprocals in the inequality (1.2),
we get an inequality with reserve inequality sign. Thus it is enough to prove Theo-
rems 1.1 and 1.2 only in the convex and quasi-convex cases, respectively.

In this two cases Theorems 1.1 and 1.2 will be proved at the same time. The
proofs are similar those of Mirsky theorem.

By making use of (1.2) in the convex and quasi-convex cases, it can be show
that the statement of Theorems 1.1 and 1.2 are valid for n=2. Assume that the
theorems are valid for all integers through n—1=2. i.e. inequalities

ﬂn_k_l(ih ol | in—l) = Rkk-i-l(fl’ ey fu—l)v

Hn“k—l(;'l, ke in—l) = Hk_f-ll(i]_q seey If-lvr—‘l)

(1.4)

hold for
I1sh=.<f =0 k=12....,0=2

By (1.4) we get

H .Pk”_k_l(i]_, yeng in-l) e H -Pkk-}-l(il! weey iﬂ‘l)s
Yaly =<y 30 1=ij=..<i,_y=n

1 M s L) I BER (s oo B,
1=i=...<i,_;=n 1si<..<i,_,=n

respectively, for k=1, ..., n—2. Regarding (1.3) we obtain the following inequalities:
[}-‘i(], o) n)](u—k-l)(n-t) = [‘F;:+I(]! i n)]k(u-k-—l),
[B(1, s n)](n—k—l)(n-k) T ) P n)](i+l){ll——k—~l)

for k=1, ..., n—2. Consequently
(1.5)

n—k
P 5 Pk+1s
n—k k41
B-*= R4

for k=1, ..., n—2. But inequalities (1.5) are valid for k=n—1 by conditions (1.2)
in the convex and quasi-convex cases, respectively.
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2. Convex (quasi-convex) and concave (quasi-concave) matrices
with respect to a functional

Let n=2 be an integer, and let A=(a,)] be a nXn matrix with real or
complex entries. As it is usual, matrices

a,-”-x ves a,'.ll‘k
A(‘-.l’ seey fk) - . wes . . ] = il <= f‘* =n
ﬂ,-k,-l...a,-&i

are said to be principal k rowed matrices, where k=1, ...,n It is obvious that
A(l, ...,n)=A. For brevity let us denote

A(ils eaay in—l) = AJ‘ (j= l, ¥hug n)&

where {i,, ...,i,_,,j} is equal to the set {1, ..., n}.
Let F be a real-valued functional defined on all square matrices with real or
complex entries.

Definition 2.1. The nXn matrix A4 is said to be convex, concave, quasi-con-
vex and quasi-concave, respectively, with respect to the functional F, if conditions
of the convex, concave, quasi-convex and quasi-concave systems are satisfied by

ﬂ(il, seny f*) = FA(EI, weey l.k) =0
for
l=h<..<ifij=n k=1,..,n.

In the following it will be shown that there are convex, concave, quasi-convex
and quasi-concave matrices with respect to certain functionals, implying that there
are convex, concave, quasi-convex and quasi-concave systems, respectively.

Examples for convex matrices with respect to functionals.
Denote by E the unit matrix, and by M the matrix with all entries equal to one.

Theorem 2.1. Matrix A=xE+M is convex with respect to the functional
FA=Per A for x=0.

PrOOF. It is trivial that consition (1.1) is satisfied.
It can easily be seen that

Per A = n!S,,
where
n ok
(2‘1) Sn = Sn(x) — 2_’
K=o k!
and hence

Perd; =(n—-1'S,_., (j=1,...,n).
The statement of the Theorem holds, if we show that

" n
- n
SS" 1

= < —, x=0.
e n!’

(2.2) 1
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Equality on the left hand side holds if and only if x=0, and on the right hand side
the boundary can’nt be refined.
To prove this statement the following Lemma is needed.

Lemma 2.1. The inequality
boee Sﬁ_ e
n—1 n isu‘_

holds for x=0 with equality on the right hand side if and only if x=0.
PRrOOF. Let

2.3) 1+

2(n—1)

S = 5 R =
After a short calculation we get
a=22 (k=0,1,...,n=2),
(2.4) Qyy =2"1-—1,

G B "”‘] (k=0,1,...,n—2),

further more s

2.5) =2 (k=0,1,...,n-1),
i3 [

v=k+1

(k=0,1,..., n—2).
)

Hence we get the inequalities

(2.6) na,—(n—1)b,=2*>0 (k=0,1,...,n-2),
and
(2.7) na,_ ,—(n—1b,_,=2""1'—n=0

with equality if and only if n=1, 2. Further for k=0, 1, ...,n—2 we obtain

e vy R R )

ve=]

By making use of the identity

n ("5 - (315) = w-ns2 (3 15).

we can derive the following formula:

na—=Db =3 |(ky) - (e51)]-

It is easy to see that

[zif]—(:ff] £0 (wl oaih N
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Thus
(2.8) na, —(m—1b,., =20 (k=1,...,n-2).

The relations (2.6), (2.7) and (2.8) prove the left hand side inequality of (2.3).
On the basis of (2.4) and (2.5)

a*—-b,‘ =0 (k =0, l,....n"_'z),

au—l_bn—l B | ]!

au+k"bn+&= nIk]_[ziflc] -:'.:0 (k =0’ l’ ”""_2)'
Therefore inequality
(2.9) Sa-2(x)S,(x) = S5_1(x), x=0

holds with equality if and only if x=0, i.e. the right hand side inequality of (2.3)
is justified too. This completes the proof of the Lemma.
Returning to the proof of Theorem 2.1, let

Su-1(x) > Se-1
5w A

S(x) =

x=0.

By Lemma 2.1

Sa-i
Sh

S'(x) = [(nSy-2S,—(n—1)S5-,] >0

for x=0. Thus S(x) is strictly increasing for x=0. This result along with
3 n"
Jim S() = 7

give us the proof of inequality (2.2). Thus Theorem 2.1 is proved.
Using the terminology of G. SzeGO ([4], Chapter 3) the right hand side of the
inequality (2.3) can be formulated in the following way.

Theorem 2.2. The sequence {S,(x)}s of polynomials is a polynomial system of
the Turdn type for x=0.
By (2.9) we get that
Sil"“’ Sn—l
Su—l Su

L

for x=0, with equality if and only if x=0. Thus sequence

o5l

is increasing with the same limit 1 for x=0.
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Theorem 2.3. Let the diagonal elements of the matrix A=(ay)] be positive num-
bers, and let the remaining entries be not smaler than 1. Then A is a convex matrix
with respect to the functional

P(A) - H aﬂ‘.
Jrk=1

Proor. We shall use the following identity. If the entries of matrix A=(a;,)]
are real or complex numbers different from zero, then

(2.10) 0 P(AGy s i) = (3 )b (P(4)) 52

Returning to the proof of the theorem, we get under the condition of the theo-
rem, using the identity (2.10), that

Jé P(A)) = ay,...an(P(A))~2 = P(A),

with equality if and only if the non-diagonal entries are equal to 1. Thus we proved
the theorem.

Now we formulate two conjectures, which are suggested partly by Theorem 2.1
partly by Theorems 2.4 and 2.5.

It is known ([1], p. 85, Def. 4) that the nXn matrix A is said to be total posi-
tive (non-negative) if all subdeterminants of arbitrary order are positive (non-
negative).

Conjecture 2.1. All positive definite Hermite-symmetric matrices 4 are con-
vex with respect to the functional FA=Per A4.

Conjecture 2.2. All total positive matrices 4 are convex with respect to the
functional FA=Per A.

Examples for concave matrices with respect to functionals.

Theorem 2.4. All positive definite Hermite-symmetric matrices A are concave
with respect to the functional FA=Det A.

Proor. Condition (1.1) are satisfied automatically.
Let B=adj A. By the Hadamard’s determinental inequality

1] Det A, = Det B = (Det Ay~
j=1

with equality if and only if 4 is a diagonal matrix. This completes the proof.

Theorem 2.5. All total positive matrices A are concave with respect to the func-
tional FA=Det 4.

ProOF. Since A is a total positive matrix, conditions (1.1) are satisfied auto-
matically.
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Matrix A*=(aj)] is said to be the transsignation of A=(ay)i, if aj=
=(—1)**a, for j, k=1, ...,n. It is obvious that

(2.11) Det A* = Det A.

A matrix A is said to be sign-regular if its transsignation is a total positive
matrix. It is known ([1], p. 87), if 4 is total positive matrix, then 4~ is sign-regular,
and conversely. Thus we get

(2.12) Det B = Det B* = (Det A)" %,

if here again B=adj 4. Moreover it is known also ([1] p. 108. Satz8) if 4 is a
total positive matrix, then inequality

(2'13) DetA - a“...ﬂ‘m,

holds. Since B is sign-regular, then B* is a total positive matrix, consequently
[] Det A; = Det B* = (Det A)"~1
Jj=1

by (2.11), (2.12), and (2.13). Thus the proof of the theorem is finished.
Applying same procedure, which was used in the proof of Theorem 2.3, we get
the following statement.

Theorem 2.6. If the diagonal elements of A=(ay)} are positive numbers, and
the remaining entries of A are positive numbers too, but not larger that 1, then A is

n
concave with respect to the functional P(A)= ][ aj.
Jlkzl

Examples for quasi-convex matrices with respect to functionals.

Theorem 2.7. If the entries of (A=(ay)i are non-negative numbers, moreover
the elements of the diagonal of A are positive numbers, then A is quasi-convex with

n
respect to the functional S(A)= 2 ay.
jak=l

Proor. Condition (1.1) is satisfied evidently.
For every matrix A=(a;); we have

e 3 St =(32) S seh

1=iy<..<i,=n

Using identity (2.14), and the inequality between the arithmetic and geometric
means we get

(.Ijl S(A))" = 71?% S(4;) = %[Jé: aj;+(n—2)S(4)] < S(4),

which is the statement of the theorem.
The following statement is a special case of Theorem 2.7.
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Theorem 2.8. Suppose that the diagonal elements of matrix A are positive num-
bers. Then A is quasi-convex with respect to the functional FA=tr A.

Theorem 2.9. Let the elements of A=(a)i be positive numbers. Let

4=

Qi /1

Then matrix A (A~) is quasi-convex with respect to the functional FA=FA~=
=Per A-Per A~.

Proor. Inequality (1.1) is satisfied trivially.
It is well-known that

@y, ...0,, [] Per A; < (Per A)",
j=1
thus similarly :
1 e
—— ...—— J] Per A7 < (Per A™)".
all aﬂn fgl 4 ( )

Multiplying these we get the statement of the theorem.
Examples for quasi-concave matrices with respect to functionals.

Theorem 2.10. If all entries of A=(ay,)} are positive numbers, then A is quasi-
concave with respect to the functional
F A — %— = H (A).

Jk=1 dj

Proor. Condition (1.1) is satisfied trivially.
Applying the inequality between the geometric and harmonic mean, we get

n —1
(_IJ;H(AJ))M"E . P!l i ﬂ(ﬂ )" l . u?‘l

=1 H(4)) 1siy<..<i,_,=n k=1 Qi j, Jk=1 Qjy

= H(A)

1

using equality (2.14) for k=n—1. And this is the statement of the theorem.
The following theorem can be proved in a similar way.

Theorem 2.11. If the diagonal elements a; (j=1,...,n) of the matrix A are
positive numbers, then A is quasi-concave with respect to the functional

n
n

FA =

The following Theorem gives a comparison result between the functionals
Per A and P(A).
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Theorem 2.12. Let the entries of matrix A=(ay)} be positive numbers. Then
Per A an']/ H aj
ik=1

with equality if and only if A=a"b, where a and b are n-dimensional column vectors
with positive components, and a* denotes the transpose of a.

Proor. By the well-known relation between the aritmetic and geometric means,
we obtain

L berd =V I ant, =V A,

(iys senipg)ER

where R is the set of permutations of the elements 1, ..., n without repetition. Equal-
ity holds if and only if

(2.15) a]ll...a“in -_— au...am, (il" ey i")ER.
By (2.15) it can be obtained easily that

injy @iy ja

De[ ]—-_-0, léil“:igén,lgjl{jgén

Qiyjy  Biyja

indicating the rank of A4 is one. Then we have
(ail...a,-,,) = b;(al, sasy ”), bi - 0 (f. = ]. cery n),

which is the statement of the theorem.
The following theorem of Van der Waerden type result is a special case of
Theorem 2.12.

Theorem 2.13. If A=(a;)] is a doubly stochastic matrix with positive ele-
ments, then

PerA=n!| ][] a;
Jk=1
: ; 1
with equality if and only if cll entries of A equal to —

Proor. It is enough to prove the case of equality.

Since A is a stochastic matrix, i.e. b, 2, a;=1, thus b= : (=1,...,n).

j=1
Z aj
Moreover A is a double stochastic matiix. These two conditions arc satisfied in the
case only if

1

ap = = (=1, ..M.
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3. Inequalities of Szisz type

In the following some consequences of theorems in the first, and the second
section are discussed.

Inequality (2.2) gives the following theorem.

Theorem 3.1. For fixed x=0 sequence
{(n!S)'")s
is strictly increasing, where
e
Y
By conjectures 2.1 and 2.2 are suggested the following conjectures.

Conjecture 3.1. If A is a nXn positive definite Hermite-symmetric matrix,
P, denotes the product of all principal k rowed permanental minors of A4, then

1
n=1
'Pl.i’zpz l).,: _P(H+2 R'
with equality if and only if 4 is a diagonal matrix.

Conjecture 3.2. 1f A is a total positive nXn matrix, and F, denotes the product
of all principal k rowed permanental minors of A4, then sequence

1
(n—1y
: {ﬂ(k'-—l) }?
is increasing.
The next theorem follows immediately from Theorems 1.1 and 2.4.

Theorem 3.2. If A is a positive definite Hermite-symmetric nXn matrix, and
B, denotes the product of all principal k rowed determinental minors of A, then

1 1 .

Pl. = Pz(u;l) = 3("_2]) = . = P n-2) - P

with equality if and only if A is a diagonal matrix.

This is the theorem of O. SzAsz ([3]), we mentioned in the introduction.
Theorems 1.1 and 2.5 imply the following theorem.

Theorem 3.3. If A is a total positive nXn matrix, and B, denotes the product
of all principal k rowed determinental minor of A, then sequence

P

(REDy;
is striclty decreasing.

The next theorem follow from Theorems 1.2 and 2.7.
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Theorem 3.4. If all entries of the nXn matrix A are positive numbers, and F,
denotes the product of the sums of entries of all principal k rowed matrices of A, then

sequence
i &

(P

is strictly increasing.
Theorems 1.2 and 2.8 imply the following result.

Theorem 3.5. If the diagonal elements of the nXn matrix A are positive, and
B, denotes the product of sums of the diagonal elements of all principal k rowed matrices
of A, then sequence

1
[
By
is strictly increasing.
The following theorem is a consequence of the Theorems 1.2 and 2.9.
Theorem 3.6. Let the entries of the nXn matrix A be positive numbers. Let
A~ denote the matrix constructed by the inverts of the entries of A. If F, denotes the

product of all principal k rowed permanental minors of A and of A, respectively,

then sequence
1

{P k(*)}?
is strictly increasing.
By Theorems 1.2 and 2.10 we have the following result.

Theorem 3.7. Let all entries of the nXn matrix A be positive numbers. Let F,
denote the product of the harmonic means of the entries of all principal k rowed matrices
of A devided by k. Then

1
([
{A k)}l
is strictly decreasing.
The next theorem follows from Theorem 1.2 and 2.11.

Theorem 3.8. Let the diagonal elements of the nXn matrix A be positive num-
bers. Let P, denote the product of harmonic means of the diagonal elements of all
principal k rowed matrices of A, then sequence

1

Py

is strictly decreasing.

Remark. The reason of not deriving more Széasz type theorem by making use
of Theorems 2.3 and 2.6 is that they would not provide new results but only trivi-
alities.

Finally we show an example for quasi-concave functional defined on a prob-
ability space.



112 B. Gyires

Theorem 3.9. Let (2, # P) be a probability space. Let n=2 be an integer. If
A€F (j=1,...n), P(4;...4)>0,

moreover if
R= [ PA..4) (k=1,..,n),
1si,=<...<i,=n
then
3.1 s 2 2

pO=p®. = petD.p
= =z.=zR5;V =P
with equality everywhere if and only if the representations

(3-2) Ak=A+Bk (k — l, ey n)
hold with

(33) Ac#F, P(A)>0; B,F, AB, =0, P(B)=0 (k=1,...,n).
PrOOF. Since
Ck=A1...A*_1Ak+1...A"DAl...A“ (kzl, ...,"),

we have P,_,=Pr, i.e. the condition of Theorem 1.2 for quasi-concave system is
satisfied, consequently (3.1) holds.
Equality is in (3.1) everywhere if and only if

(3.4) P(Ay)...P(A,) = P*(Ay ... A).
Since
A DMy, towly o0
we get
P(A) = P(Ay...A4) (k=1,...n).

Thus (3.4) is satisfied if and only if

3.5) P(A) = P(As...4) (k=1,...,n).
It is obvious that
A =A4C+AC, =A+B, (k=1,....n)
using the notations
A= ..A, B=AC (k=1 ...1),
where
AB, =0 (k=1,...n),
and we get that
P(B) =0 (k=1,....,n)

by (3.5). L.e. we obtained a representation (3.2) satisfying condition (3.3).
Conversely, when representation (3.2) with conditions (3.3) hold, we have

P(4,) = P(A)+P(B) = P(4) (k=1,..,n).
Using condition
AB, =0 (k=1,...,n)
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again, we have

Ay...A, = [[(A+B,) = A+B,
J=1

where
B 8. B,
consequently
AB =0, P(B)=0.
Thus

P(A;...A,) = P(A)+P(B) = P(A),

i.e. condition (3.4) is satisfied. This completes the proof.
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