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On the behaviour of Colombeau’s generalized
functions at a point

Applications to semilinear systems

By S. PILIPOVIĆ (Novi Sad) and M. STOJANOVIĆ (Novi Sad)

Abstract. We define the quasiasymptotics at zero (or at any other point) of
a Colombeau’s generalized function, element of G, and show that this definition re-
strected on a Schwartz’s distribution embedded into G gives the well-known notion of
the quasiasymptotics at zero and, in a special case, the value at zero. We analyze the
quasiasymptotics of a Cauchy problem for a strictly semilinear hyperbolic system and
show that under suitable assumptions on the non-linear term, the behaviour of the
solution is determined by the behaviour of initial data.

1. Introduction

The multiplication of generalized functions in Colombeau’s general-
ized function space G is well-defined and because of that has a lot of ad-
vantages in solving nonlinear partial differential equations as well as linear
ones with singular coefficients.

The aim of this paper is to present a new method of qualitative anal-
ysis of solutions to initial value non-linear problems in relation to initial
data. Remark that the quasiasymptotics is the notion of linear analysis
and we use it in non-linear problems in the frame of Colombeau’s gener-
alized functions.

We refer to [15] for the advantages of these notions in applications to
some problems of theoretical physics in the frame of Schwartz distributions.
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For the relations of ordinary asymptotics and quasiasymptotics we refer
to [15] and [9]. Clearly, under weaker assumptions ordinary asymptotics
implies the quasiasymptotics but the converse does not hold in general.

In this paper we define the quasiasymptotics at zero of Colombeau’s
generalized functions and show that our definition restricted to Schwartz’s
distributions gives the well-known notion of the quasiasymptotics at zero.

We consider a semilinear hyperbolic system which, in general, can
model two phenomena: advection (transport, propagation) and nonlinear
interaction (or selfinteraction), see [6]. Hyperbolicity means that the time
variable is distingvished and that a Cauchy problem is well posed in time,
for arbitrary initial data. We apply our theory to a Cauchy problem and
show that under suitable assumptions on the non-linear term the behaviour
at zero of a solution which is in G is determined by the behaviour of
the initial data. The results are interesting in the case when the initial
condition does not have any ordinar behaviour but satisfy the assumptions
concerning quasiasymptotic behaviour at zero. Variety of examples with
different behaviour at zero is presented.

Notation. We will use the well known notions of Schwartz’s theory.
Basic spaces are C∞c (Ω) = D(Ω), where Ω is an open subset of Rn, and
S(Rn). Their strong duals are Schwartz distributions space D′(Ω) and the
space of tempered distributions S ′(Rn).

We recall the definition of a sequence of seminorms on C∞(Ω). Let Ωk

be a sequence of open sets such that
⋃∞

k=0 Ωk = Ω, Ωk ⊂⊂ Ωk+1, k ∈ N0.
Then

(1) µk(f) =
∑

|α|≤k

(
sup

x∈Ωk

|∂αf(x)|
)
, k ∈ N0.

The uniform structure on C∞(Ω), defined by this sequence of seminorms,
does not depend on the choice of the sequence Ωk.

The space of compactly supported distributions and of tempered dis-
tributions supported by [0,∞) (resp. (−∞, 0]) are (C∞(Ω))′ = E ′(Ω), and
S ′+(R) (resp. S ′−(R)).

We denote by L Karamata’s slowly varying function at zero. Recall,
it is measurable, positive and

lim
ε→0

L(εt)
L(ε)

= 1

uniformly for t ∈ [a, b] ⊂ (0,∞) (and ε < ε0/b), ε0 is fixed.
Throughout the paper C will denote the generic constant which is

different in different appearences.
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2. Colombeau’s generalized functions

We will present the simplified version of Colombeau’s theory (cf. [1],
[3], [6], [11]).

Let V be a topological vector space whose topology is given by a
countable set of seminorms µk, k ∈ N, given by (1).

Then EM,V is the set of locally bounded functions R(ε)=Rε : (0, 1)→V

such that for every k ∈ N there exists a ∈ R with the property that

µk(Rε) = O(εa),

where O(εa) means that the left side is smaller or equal than Cεa for some
C > 0 and every ε ∈ (0, ε0), ε0 > 0. The upper bound of such reals a is
called the k-valuation of Rε and it is denoted by vk(Rε).

The space of all elements H ∈ EM,V with the property that for any
k ∈ N and for any a ∈ R, µk(Hε) = O(εa) is denoted by NV . Note, NV

is the space of elements Hε whose all valuations vk(Hε), k ∈ N, are equal
to +∞.

The quotient space GV = EM,V /NV is called the polynomially gener-
alized extension of V . If Rε − R′ε ∈ NV , then vk(Rε) = vk(R′ε) for every
k ∈ N0. The k-valuation of a class [Rε] is naturally defined (brackets [ ]
are used to denote the equivalence class in the quotient space).

Scarpalézos has used valuations for the definition of the metric in
GV and the so called sharp topology. If the space V is an algebra whose
products are continuous for all the seminorms, then NV is an ideal of the
algebra EM,V and GV becomes a Hausdorff topological ring.

If V = C, then GV is called the algebra of generalized constants and
it is denoted by C̄; EM,V is denoted by E0 and NV is denoted by N 0.

If V = C∞(Ω), where Ω is an open set in Rn and µk are given by (1)
then GV is called the algebra of generalized functions on Ω and it is denoted
by G(Ω); EM,V is denoted by EM (Ω) and NV is denoted by N (Ω).

Then, G(Ω) is a differential topological ring where derivations ∂x are
continuous for its sharp topology. In n-dimensional case, C̄ can be consid-
ered as a subalgebra of G(Ω).

In order to embed E ′(Ω) into G(Ω) we recall the following assertion of
Colombeau, slightly changed in [11] for the sake of simplified version of
Colombeau’s theory.
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Let ψ ∈ C∞c (Rn) = D(Rn) and φ ∈ S(Rn) such that it is even, F(φ) =
φ̂ ∈ D(R) and φ̂ ≡ 1 on a neighbourhood of zero. Put φε2(x) = 1

ε2 φ
(

x
ε2

)
,

x ∈ Rn, ε ∈ (0, 1). Then,

Nε(x) = (ψ ∗ φε2(x)− ψ(x)) belongs to N (Ω),

where ∗ is a convolution.

We fix once for all such a function φ and call it the “vision” function.
Put Iφ(ψ) = [ψ ∗ φε2 ]. Usually, ε is used instead of ε2 but later it will be
clear why we use ε2. It can be easily verified that if ϕ, ψ belong to D(R),
then

Iφ(ϕ · ψ) = Iφ(ϕ) · Iφ(ψ).

If T ∈ E ′(Ω) then Iφ(T ) = [T ∗φε2 ]. We will use [T ] for Iφ(T ) in order
to simplify the notation.

Since the presheaf U → G(U) (U is open in Rn) is a sheaf, it follows
that the above embeddings can be extended to embeddings of C∞(Ω) and
D′(Ω) into G(Ω). The support of a generalized function H is defined as
the complement of the largest open subset Ω′ ⊂ Ω such that H|Ω′ = 0. If
T ∈ D′(Ω), then supp T = supp(Iφ(T )) .

If G is a generalized function with compact support K ⊂⊂ Ω (G ∈
Gc(Ω)) and Gε(x) is a representative of G, then its integral is defined by

∫
Gdx =

[∫
ψ(x)Gε(x)dx

]
,

where ψ ∈ C∞0 (Rn), ψ = 1 on K. This definition does not depend on ψ.

If G,F ∈ G(Ω) then they are equal in the sense of distributions, G
D′= F

if ∫
(Gε(x)− Fε(x))ψ(x)dx ∈ N 0 for any ψ ∈ D(Ω),

Gε and Fε being the representatives of G and F , respectively.

3. Quasiasymptotics at zero

This notion is defined by Droshinov and Zavialov for elements of
S′+ (cf. [14]). We will use slightly modified definition [9]. In the sequel ω

will denote an open set in Rn which contains 0.
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Definition 1. Let f ∈ D′(ω), (resp. f ∈ S ′(Rn)) and c be a positive
measurable function in an interval (0, ε0). If

(2) lim
ε→0

f(εx)
c(ε)

= g(x) 6= 0, in D′(ω) (resp. in S ′(Rn)),

then it is said that f has the quasiasymptotics at zero with respect to c(ε)
in D′(ω), (resp. in S ′(Rn)). We write, f

q∼ g at zero with respect to c(ε).

For f to have value at zero in the sense of Lojasiewich [5] g needs
to be a constant and c = 1.

It follows from (2) that

(3) c(ε) = ενL(ε), ε ∈ (0, ε0).

Remark. Let the space dimension be n = 1. Then, one can show [9]
that (2) implies that the limit distribution is of the form

(4) g(x) = C+fν+1(x) + C−fν+1(−x), x ∈ R,

where (C+, C−) 6= (0, 0)

fν+1(x) =

{
H(x)xν/Γ(ν), ν > −1

f
(m)
ν+m+1(x), ν ≤ −1, ν + m > −1, m ∈ N,

where H is Heaviside’s function and (m) is the distributional derivative.
The following two theorems relate the notion of the quasiasymptotics

at zero and ∞ in D′(ω), and S ′(Rn). Their proofs are combinations of
Theorem 2 in [9] and Lemma 6 in [15], as well as of Theorem 1 in [10] and
again Lemma 6 in [15].

Theorem A. Let f ∈ D′(ω), f
q∼ g, at zero in D′(ω), with respect

to ενL(ε), where 0 ∈ ω ⊂ R. Let θ ∈ C∞0 , θ = 1 in [−s, s]n ⊂ ω. Then,

f1 = θf
q∼ g, at zero with respect to ενL(ε), in S ′(Rn).

Moreover, if we assume ν /∈ −N, then there exist a continuous function

F and m ∈ N0, m + ν > 0 such that

f1 = F (m), lim
ε→±0

F (ε)
|ε|m+νL(|ε|) = (C+, C−) 6= (0, 0).
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Theorem B. Let f ∈ D′(R), c(k), k > 0 be positive and measurable.
Assume that for every ψ ∈ D(R) there exists the limit

lim
k→∞

〈f(kx)/c(k), ψ(x)〉

and it is different from zero for some ψ. Then, f ∈ S ′(R) and this limit
exists for every ψ ∈ S(R).

Further characterizations of the quasiasymptotics at zero are given in
the next proposition.

Proposition 1. Let f ∈ E ′(R), supp f = K 3 0. The following condi-
tions are equivalent:

(a) f
q∼ g 6= 0, at zero with respect to c(ε), in S ′(R).

(b) f
q∼ g 6= 0, at zero with respect to c(ε), in D′(R).

(c)

lim
ε→0

(f ∗ φε2)(εx)
c(ε)

= g in S ′, g 6= 0,

where φ is the “vision” function.

(d) For every θ ∈ D(R), θ(0) 6= 0, fθ
q∼ θ(0)g 6= 0 at zero with

respect to c(ε), in D′(R).

Remark. Clearly, if (c) holds, then the limit in (c) exists in D′.
Proof. The equivalence (a) ⇔ (b) follows from Theorem A.
(a) ⇒ (c). Let α ∈ S, η > 0 and ε > 0. We have

〈
(f ∗ φη)(εx)

c(ε)
, α(x)

〉
=

〈
f(x)
εc(ε)

, (φ̌η(t) ∗ α(t/ε))(x)
〉

,

which implies, for η = ε2,
〈

(f ∗ φε2)(εx)
c(ε)

, α(x)
〉

=
〈

f(εx)
c(ε)

,

∫ ∞

−∞
φ̌ε2(t)α(x− t/ε)dt

〉

=
〈

f(εx)
c(ε)

, ψε(x)
〉

,

where

ψε(x) =
∫

φ̌ε2(t)α(x− t/ε)dt =
∫

φ̌(t)α(x− εt)dt, x ∈ R.
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One can easily prove that ψε converges to α in S(R). This implies

lim
ε→0

〈
(f ∗ φε2)(εx)

c(ε)
, α(x)

〉
= 〈g, α〉, α ∈ S(R).

(c) ⇒ (a) We will use the following well-known equalities:

F
(

1
ε
f

( ·
ε

))
(ξ) = f̂(εξ)

〈f, ψ〉 = 〈f̂(ξ), ψ̂(−ξ)〉, ψ ∈ S(R), f ∈ S ′(R).

Let θ be an arbitrary element of D(R) and ψ ∈ S(R) such that ψ̂ = θ ∈
D(R). Then,

〈
(f ∗ φε2)(εx)

c(ε)
, ψ(x)

〉
=

〈
f̂(kξ)
c1(k)

φ̂(ξ/k), θ(ξ)

〉
,

where c1(k) = εc(ε), ε = 1/k. Since φ̂(ξ/k) = 1 on supp θ for enough large
k, for every θ ∈ D

(5) lim
k→∞

〈
f̂(kξ)
c1(k)

, θ(ξ)

〉
= 〈g1(ξ), θ(ξ)〉.

Theorem B implies that (5) holds for every θ ∈ S(R).
Let ψ = F(θ), θ ∈ S(R). It follows

lim
ε→0

〈
f(εx)
c(ε)

, φ(x)
〉

= 〈F−1(g1), θ〉

what is assertion (a).

(b) ⇒ (d) Since for every α ∈ D(R), θ(ε·)α → θ(0)α in D(R) the
proof is simple.

(d) ⇒ (b) Take θ ∈ D(R) such that θ(x) = 1 for |x| < ε0. Then for
ε < ε0 we have

〈
f(εx)θ(εx)

c(ε)
, α(x)

〉
=

〈
f(εx)θ(0)

c(ε)
, α(x)

〉

which implies (b).
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4. Quasiasymptotics at zero
of Colombeau’s generalized functions

Let K be the set of positive measurable functions defined on (0, 1)
with the property

A−1εp ≤ c(ε) ≤ Aε−p, ε ∈ (0, 1)

for some A > 0 and p > 0.

Definition 2. Let F ∈ G(ω). It is said that F has the quasiasymptotics
at zero with respect to c(ε) ∈ K if there is Fε, a representative of F , such
that for every ψ ∈ D(ω) and some s > 0 there is Cψ,s ∈ C such that

(6) lim
ε→0

〈
Fε(εsx)

c(ε)
, ψ(x)

〉
= Cψ,s

and Cψ,s 6= 0 for some ψ and s.

Remark. If F ∈ Gt(R) — the space of Colombeau’s tempered gener-
alized functions, then we say that F has the quasiasymptotics in Gt if (6)
holds for every ψ ∈ S(R). We will not use this notion and because of that
we do not recall the properties of Gt(R).

It follows from (6) that this limit exists for every s > 0 and that for
every s > 0 there exists ψ such that Cψ,s 6= 0.

Note, in general, Fsε, s 6= 1, is not a representative of F = [Fε].
The consequences of this definition are given in the next proposition.

Proposition 2.

(a) Let Rε ∈ N (ω). Then, for every c ∈ K, s > 0 and every ψ ∈ D(ω),

lim
ε→0

〈
Rε(εsx1, . . . , εsxn)

c(ε)
, ψ(x1, . . . , xn)

〉
= 0.

(b) Let F ∈ G(ω), c ∈ K and let (6) hold. Then, (6) holds for every
representative F̃ε of F .

(c) If (6) holds, then there exists g ∈ D′(ω) such that for s = 1

Cψ,1 = Cψ = 〈g, ψ〉, ψ ∈ D(ω).

Proof. (a) It follows from the assumption on c ∈ K, (b) follows
from (a) and (c) follows from the Banach–Steinhaus theorem.
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According to Proposition 2 (c), for Colombeau’s generalized functions
we will write

F
q.c.∼ g at zero with respect to c(ε).

Proposition 3.

(a) Let f ∈ E ′(Rn), and f
q∼ g at zero with respect to c(ε). Then

(7) Iφ(f)
q.c.∼ g at zero with respect to c(ε).

Conversely, if f ∈ E ′(Rn) and (7) holds, then f
q∼ g at zero with

respect to c(ε).

(b) Let F
q.c.∼ g at zero with respect to c(ε). Then, for every ψ ∈ C∞

ψF
q.c.∼ ψ(0)g

at zero with respect to c(ε).

Proof. (a) Recall, the representative of Iφ(f) is f ∗φε2 . Then Propo-
sition 1 (c) implies the assertion in both directions.

(b) Proposition 1 (d) implies the assertion.

Examples. Recall that (2) implies (3) and (4), but it is not true in
general in G. The existence of the quasiasymptotics at zero for an element
of G does not imply that c(ε) must be of the given form as well as g.

Example 1. We consider the δ2-potential (cf. [7]) determined by

Θφ,ε(x) =
1
ε2

φ2
(x

ε

)
, φ ∈ C∞0 , with supp φ ⊂ [−1, 1],

∫
φ(x)dx = 1,

as the example of Colombeau’s generalized function (element of G) which
is not obtained by embedding of a distribution in G (i.e. which is not
generated by some distribution). We shall prove that

[
1
ε2 φ2

(
x
ε

)]
has the

quasiasymptotics at zero with respect to c(ε) = ε−2. It holds

lim
ε→0

〈
Θφ,ε(εx)

ε−2
, ψ(x)

〉
= lim

ε→0

∫
φ2(x)ψ(x)dx(8)

= 〈φ2, ψ〉 = Cψ,1, Cψ,1 ∈ C.

Thus, [Θφ,ε] has the quasiasymptotics at zero in the sense of Definition 2
with respect to ε−2. The limit distribution in (8) is not of the form Cxα.
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Example 2. The generalized function
[(

2 + sin 1
ε

)
φ2

(
x
ε

)]
has the qua-

siasymptotics at zero with respect to c(ε) = 2 + sin 1
ε , but it is not of the

form c(ε) = εαL(ε). Also
〈

1
c(ε)

(
2 + sin 1

ε

)
φ2(x), ψ(x)

〉
→ 〈g(x), ψ(x)〉,

ψ ∈ D and g is not of the form Cxα, C 6= 0.

Example 3. The generalized function 1
ε2 φ2

(
x
ε2

)
has the quasiasymp-

totics with the limit δ
∫

φ2(t)dt with respect to c(ε) = ε−1 because

〈
1

ε−1

1
ε2

φ2
(εx

ε2

)
, ψ(x)

〉
=

〈
1
ε
φ2

(x

ε

)
, ψ(x)

〉

= 〈φ2(t), ψ(εt)〉 = ψ(0)
∫

φ2(t)dt.

Example 4. Let F, G ∈ G(ω). If F
q.c.∼ g at zero with respect to c(ε)

and G
q.c.∼ g1, at zero with respect to c1(ε), then it is not true, in general,

that GF
q.c.∼ gg1 at zero with respect to c2(ε) = c(ε)c1(ε). For example,

1
ε2 φ

(−x
ε2

) q.c.∼ δ with respect to c(ε) = ε−1 but 1
ε4 φ2

(−x
ε2

) q.c.∼ (
∫

φ2(t)dt)δ
with respect to c(ε) = ε−3.

Example 5. The
√

δ-potential (cf. [7]) determined by

Θψ,ε(x) =
1√
ε
ψ

(x

ε

)
, ψ ∈ C∞0 with supp ψ ⊂ [−1, 1],

∫
ψ2(x)dx = 1

is associated with the zero distribution. It has the quasiasymptotics at
zero in the sense of Definition 2 with respect to c(ε) = ε−1/2.

lim
ε→0

〈
Θψ,ε(εx)

ε−1/2
, η(x)

〉
= lim

ε→0

∫
ψ(x)η(x)dx = Cη,1, η ∈ D, Cη,1 6= 0.

Example 6. We can find the quasiasymptotic behaviour in the case of
a more general potential determined by

Θψ,ε(x) =
1

µ(ε)
ψ

(
x

ν(ε)

)
, (cf. [7]),

where ψ ∈ D, supp ψ ∈ [−1, 1] and supx∈Rψ(x) > 0, µ(ε) → 0, ν(ε) → 0
as ε → 0. In general, such potentials are not the images of distributions
in G(R).
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Let c(ε) = ν(ε)(εµ(ε))−1. Then,

lim
ε→0

〈
Θ(εx)
c(ε)

, η(x)
〉

= lim
ε→0

∫
ε

ν(ε)
ψ

(
εx

ν(ε)

)
η(x)dx

lim
t→0

∫
ψ(t)η

(
ν(ε)

ε
t

)
dt =

∫
ψ(x)η1(x)dx = Cη1,1, Cη1,1 ∈ C, η ∈ D,

if µ(ε)
ε has a limit.

5. Application

Let (x, t, u) 7→ Fi(x, t, u), i = 1, . . . , n be smooth functions on R2n+2

such that the following conditions hold:

Cn 3 u 7→ Fi(x, t, u), i = 1, . . . , n, is polynomially bounded
together with all derivatives, uniformly for (x, t) ∈ K, for
any compact set K ⊂ R2;

(9)

Cn 3 u 7→ ∇uFi(x, t, u), i = 1, . . . , n, is globally bounded
uniformly with respect to (x, t) ∈ K, for any compact set
K ⊂ R2.

(10)

Let K0 be a compact set such that the interior of K0,
◦

K0, contains 0.
We denote by KT a domain of determinancy bounded by extremal char-
acteristics emanating from the end points of K0 and the lines t = ±T .

The Cauchy problem for a semilinear strictly hyperbolic (n×n)-system
in two independent variables, (x, t) ∈ R2

(∂t + Λ(x, t)∂x)u(x, t) = F (x, t, u(x, t))(11)

u(x, 0) = (u1(x, 0), . . . , un(x, 0)) = (a1(x), . . . , an(x)) ∈ (G(R))n,

where Λ(x, t) is a diagonal matrix with the real distinct smooth functions
on the diagonal and Fi satisfy conditions (9) and (10), is uniquely solvable
in (G(KT ))n, for some T > 0 (cf. [6]).

The integral curves for (11), which pass through (x0, t0) at time τ =
t0, are the solutions to

∂

∂τ
γi(x0, t0, τ) = λi(γi(x0, t0, τ), τ), γi(x0, t0, t0) = x0.
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They are denoted by x = γi(x0, t0, τ), i ∈ {1, . . . , n}, and called charac-
teristic curves of the system. Then,

ui(x, t) = ai(γi(x, t, 0)) +
∫ t

0

Fi(γi(x, t, τ), τ, u(γi(x, t, τ), τ))dτ,

(x, t) ∈ KT .

The next proposition shows that the quasiasymptotic behaviour of
initial data to (11) implies the quasiasymptotic behaviour of the solution.

Proposition 4. Let c(ε) ∈ K, limε→0
ε

c(ε) = 0 and

limε→0
aiε(γi(εsx,εst,0))

c(ε) , i = 1, . . . , n, exist in D′(R2). for some s > 0. Then,

the solution u(x, t) = [(u1ε(x, t), . . . , unε(x, t))] has the quasiasymptotics
at zero with respect to c(ε), i.e.

lim
ε→0

〈
uiε(εsx, εst)

c(ε)
, ψ(x, t)

〉
= Ci,ψ,s,(12)

Ci,ψ,s ∈ C, ψ ∈ D(R2), i = 1, . . . , n,

for some s > 0 (which implies, for every s) provided one of the following
conditions hold:

(a) Cn 3 u 7→ Fi(x, t, u), uniformly bounded for (x, t) ∈ K for any
compact set K ⊂ R2, i = 1, . . . , n;

(b)

ε

c(ε)
sup

(x,t)∈K

|aε(γi(εsx, εst, 0))| → 0, ε → 0, i = 1, . . . , n,

for any compact set K ⊂⊂ R2.

Proof. Let ψ ∈ D(R2), supp ψ ⊂ K, K0 and T be choosen so that

K ⊂⊂
◦
KT . The representative of the solution to (11) (u1ε, . . . , unε) be-

longs (EM (
◦
KT ))n and satisfies

uiε(εsx, εst) = aiε(γi(εsx, εst, 0))(13)

+
∫ εst

0

Fi(γi(εsx, εst, τ), τ, uε(γi(εsx, εst, τ), τ))dτ,

when (x, t) ∈ KT , and i = 1, . . . , n.
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First, we shall give the estimate for uiε(εsx, εst), then the estimate
for the integral part in (13), and finally prove the assertion (12).

Putting F (x, t, u) = F (x, t, 0)+∇uF (x, t, θu)u, with 0 ≤ θ ≤ 1, in (13)
we obtain

uiε(εsx, εst) = aiε(γi(εsx, εst, 0)) +
∫ εst

0

Fi(γi(εsx, εst, τ), τ, 0)dτ

∫ εst

0

(u1ε(γi(εsx, εst, τ), τ), . . . , unε(γi(εsx, εst, τ), τ))

∇uFi(γi(εsx, εst, τ, θ(τ)uε(γi(εsx, εst, τ), τ))dτ, 0 ≤ θ(τ) ≤ 1.

Gronwall’s inequality and assumptions (10) imply that there exist C > 0
and ε0 > 0 such that for t ∈ (−T, T ), ε ∈ (0, ε0)

sup
(x,y)∈KT

|uε(εsx, εst)| ≤
{

sup
(x,t)∈KT

|aε(γi(εsx, εst, 0))|(14)

+|εsT | sup
(x,t)∈KT

|F (x, t, 0)|
}

exp
(
nεsT sup

(x,t)∈KT

u∈Cn

|∇uFi(x, t, uε)|
)

≤ C
(

sup
(x,t)∈KT

|aiε(γi(εsx, εst, 0))|+ ε
)
.

We shall estimate the integral part of (13). Let (x, t) ∈ KT . We have

∫ εst

0

|Fi(γi(εsx, εst, τ), τ, uε(γi(εsx, εst, τ), τ))|dτ

≤
∫ εst

0

|Fi(γi(εsx, εst, τ), τ, 0)|dτ

+
∫ εst

0

|uε(γi(εsx, εst, τ), τ)|dτ sup
(x,t)∈KT

u∈Cn

|∇uFi(x, t, u)|

≤ |εsT |
{

sup
(x,t)∈KT

|Fi(γi(εsx, εst, τ), τ, 0)|

+ C sup
(x,t)∈KT

|uε(γi(εsx, εst, τ), τ))|
}

.
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Now, (14) implies that there exists C > 0 such that

∫ εst

0

|Fi(γi(εsx, εst, τ), τ, uε(γi(εsx, εst, τ), τ))|dτ(15)

≤ Cε
(

sup
(x,t)∈KT

|aε(γi(εsx, εst, 0))|+ 1 + ε
)
,

when t ∈ (−T, T ), ε ∈ (0, ε0).
We have

〈
uiε(εsx, εst)

c(ε)
, ψ(x, t)

〉
=

〈
aiε(γi(εsx, εst, 0))

c(ε)
, ψ(x, t)

〉

+
∫∫ (

1
c(ε)

∫ εst

0

Fi(γi(εsx, εst, τ), τ, uε(γi(εsx, εst, τ), τ))dτ

)
ψ(x, t)dxdt.

In case (a) we immediately obtain the assertion since the double integral
on the right-hand-side tends to zero as ε → 0.

Let us prove the assertion with the assumption in case (b). By (15)
we have

1
c(ε)

∫ εst

0

|Fi(γi(εsx, εst, τ), τ, uε(γi(εsx, εst, τ), τ))|dτ

≤ C

(
ε
sup(x,t)∈KT

|aε(γi(εsx, εst, 0))|
c(ε)

+
ε

c(ε)
+

ε2

c(ε)

)
→ 0, as ε → 0.

Thus,

lim
ε→0

〈
uiε(εsx, εst)

c(ε)
, ψ(x, t)

〉
= lim

ε→0

〈
aiε(γi(εsx, εst, 0))

c(ε)
, ψ(x, t)

〉
.

¤
Consider a Cauchy problem

(16) u′(t) = F (t, u), u(0) = a = [aε] ∈ C,

where (t, u) 7→ F (t, u) is a smooth function on R2 such that (9) and (10)
hold for F (with x canceled). It is uniquely solvable in G(−T, T ) for some
T > 0 (cf. [6]).

For the behaviour of the solution to (16) we can use somewhat stronger
concept of asymptotic behaviour at zero since the initial data does not
depend on x.



On the behaviour . . . 125

Definition 3. Let F ∈ G(ω). It is said that F has the strong quasi-
asymptotics at zero with the limit g ∈ C∞(ω) with respect to c(ε) ∈ K if
there exists Fε, a representative of F , such that for every K ⊂⊂ R and
some s > 0

lim
ε→0

Fε(εsx)
c(ε)

= g(x) uniformly for x ∈ K.

We have the following Proposition.

Proposition 5. Let c(ε) ∈ K, and a = [aε] ∈ C such that

lim
ε→0

ε

c(ε)
= 0 and lim

ε→0

aε

c(ε)
= 1.

Then the solution u(t) ∈ G(−T, T ) to the Cauchy problem (16) satisfies

limε→0
uε(εst)

c(ε) = 1 uniformly in t ∈ K, for some s > 0, where K is an

arbitrary compact set of (−T, T ).

Proof. There holds

(17)
uε(εst)

c(ε)
=

aε

c(ε)
+

1
c(ε)

∫ εst

0

F (τ, uε(τ))dτ, t ∈ (−T, T ).

Condition (10) and Gronwall’s inequality [4] imply that there exist C > 0
and ε0 > 0 such that

sup
t∈(−T,T )

|uε(εst)| ≤ C(|aε|+ ε), ε ∈ (0, ε0).

This implies that there exists C > 0 such that
∣∣∣∣
∫ εst

0

F (τ, uε(τ))dτ

∣∣∣∣ ≤ Cε(1 + |aε|+ ε), t ∈ (−T, T ), ε ∈ (0, ε0).

The last summand in (17) is then

1
c(ε)

∣∣∣∣
∫ εt

0

F (τ, uε(τ))dτ

∣∣∣∣ ≤ C

(
ε
|aε|
c(ε)

+
ε

c(ε)
+

ε2

c(ε)

)
,

t ∈ (−T, T ), ε ∈ (0, ε0).
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Because aε

c(ε) → 1 and ε
c(ε) → 0, as ε → 0, the second summand in (17)

tends to zero and

lim
ε→0

uε(εst)
c(ε)

= lim
ε→0

aε

c(ε)
= 1.

¤
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