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The aim of this paper is to prove monomiality and some more general prop-
erties of characters from certain assumptions on centralizers of elements in a finite
group. As a consequence we get some classes of finite solvable groups where the
derived length problem d.l (G)=|c.d.(G)| can be solved positively. Throughout
the paper we widely use methods, results and notations of (1] and [2].

Hypothesis 1.1. Let G be a finite group. If M<G and M=Ker ¢ for every
@<Irr (G) such that @(1)<yx(1), where x€lrr(G), then M’=Ker yx.

Remark 1.2. It is easy to see that every M-group satisfies Hypothesis 1.1. In
Theorem 2.2 of [2] BERGER proved that every finite solvable group of odd order
also satisfies it. It can be easily proved by induction that if G satisfies Hypothesis 1.1
then d.l (G)=|c.d. (G)|.

In the following we shall need

Lemma 1.3. Let G=G,XG, be a direct procudt of finite groups. Let us suppose
that Gy and G, satisfy Hypothesis 1.1. Then G satisfies it as well.

ProoF. Let x€lrr (G), M<G such that for every ¢@€lrr (G) satisfying ¢(1)<
<y(1), M=Ker ¢. We have to prove that M'=Ker . We may suppose that
y(1)=1. Let y=yxy-xs, where x,€Irr(G,) and x.€Irr (G,). Let us suppose that
one of the y;-s, €.g. ¥» is linear. Let us denote by n;(M) for i=1,2 the image of
M at the projection n;: G—+G;, e.g. n,(M)={g,€G,|38.€G, such that g,g.,cM}.
Let y,€lrr (Gy) such that yY,(1)=<px(1)- Then (Yy-1g)(1)<x(1), so by our
hypothesis M=Ker (- 1g,), which gives that =, (M)=Ker y,. As Hypothesis 1.1
is valid in G, we have that mn,(M) =Ker x;. As x, is linear, m,(M) =Gs=Ker g,
so as M=n,(M)Xn,(M) we have that M’'=mn,(M) Xn,(M) =Ker 3. We would
get a similar result if y, would be linear. So we may assume that x;(1)<y(1) for
i=1,2. According to our hypothesis then M=Ker (3,-15,) so =n(M)=Ker y,
for i=1,2. So M'=M=n,(M)Xn,(M)=Ker y;, XKer y.=Ker y.

Lemma 1.4, Let G be a finite group. Let us suppose that for every x€G*Cg(x)
is the direct procudt of a group of odd order and of a 2-group. Then this property is
inherited to every homomorphic image of G.
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Proor. Follows directly from Lemma 1 and Theorem B of [1].

Theorem 1.5. Let G be a finite solvable group where for every xcG*Cg(x) is
the direct product of a group of odd order and of a 2-group. Then G satisfies Hypoth-
esis 1.1, in particular d.l. (G)=|c.d. (G)|.

Proor. Let G be a couterexample of minimal order. Let z€lrr (G), M<=G
such that M=Ker ¢ for every ¢@¢lrr (G) satisfying ¢(1)<y(1) and M’=Ker y.
As the hypotheses of the theorem are valid in every subgroup of G, we can prove,
similarly as in Theorem 2.2 of [2], that we may assume that y is primitive. As we
have seen in Lemma 1.4, the hypotheses of the theorem are inherited to every homo-
morphic image of G. So we may assume that Ker y=1. As G is solvable,
1#Z(F(G))=Z(G), so G is the direct product of a 2-group and of a group of odd
order. By Remark 1.2 and Lemma 1.3, Hypothesis 1.1 is satisfied in G, which is a
contradiction. The second statement follows also from Remark 1.2.

Corollary 1.6. Let G be a finite solvable group and let us suppose that for every
x€G*C;(x) has an abelian normal 2-complement, then G satisfies Hypothesis 1.1
and so d.l (G)=|c.d. (G)|.

Proor. Let G be a counterexample of minimal order, y€Irr (G), M<G such
that M=Ker ¢ for every @clrr (G) satisfying @(1)<y(1) and M’=Kery. As
every subgroup satisfies the hypothesis of the corollary, we may assume, as in the
above proof, that y is primitive. By Lemma 1 and Theorem B of [1] we have that
Cg(X) 1s 2-nilpotent for every X€G# in an arbitrary homomorphic image G of G.
Let p=2 prime, P<Syl,(G). If 1#x€Z(P) then Cg(x)=P so P'=1. If p,q=2
primes then (p, g)£Cg;(x) for every x€G# so by Theorem B of [1] (p, ¢) £Cg(X)
for every X€G% So the normal 2-complement of Cgz(X) is nilpotent and so it is
abelian. So the hypothesis of the corollary is inherited to every homomorphic image
of G. So we may assume that Ker y=1. As above we have that Z(G)#1, so G
has an abelian normal 2-complement which is in the centre. So G is the direct product
of a 2-group and of a group of odd order and by Theorem 1.5 we have a contra-
diction.

Corollary 1.7. Let G be a finite solvable group. Let us suppose that for every
x€G# the 2-Sylow subgroup of Cg(x) is normal and abelian. Then G satisfies Hypoth-
esis 1.1 and so d.l. (G)=|c.d. (G)|.

Proor. The proof is similar to that of Corollary 1.6.
In the following we shall prove a generalization of Corollary 2 and 3 of [1].
Definition 2.1. Let G be a finite group, = a set of primes. We say that G has

property T, with respect to the partition n= U n; if the following conditions are
satisfied:

a) mNn;=P for i=j

b) |[=]|=2 for i=1, ...,k

¢) G has a normal n-complement K and G/K—)( A;, where A€Hall,, (G/K)
and all A4; are supersolvable.
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Theorem 2.2. Let G be a finite n-solvable group, n=|\J n;, m;Nn;=0 for i#j
1

and |m|=2 for i=1,...,k. Let us suppose that for every m-element x€G#*Cg(x)
has property T, with respect to this partition. Then this property is inherited to every
homomorphic image of G.

PrOOF. Let G be a couterexample of minimal order, H<G such that Cgx(X)
does not have property 7,, where G=G/H and X€G? is a m-element.

1. Cg(X) has a normal n-complement K, by Theorem B and Lemma 1 of [1].

2. As in the proof of Theorem B of [1] we may assume that H is a minimal
normal subgroup, |x| is prime power, |X| is prime, X€Z(G/H), H=®(G),
(Ix, |H|)#1 and B=<{(x, H) is elementary abelian p-group for some prime p.

3. We may suppose that Cg(x)=TecHall, (G):

By Theorem D7* in [3] if G is n-solvable then for every n;, S G has property
D, so there exists a T<€Hall, (G). By the theorem of Maschke B=H @Y, where
Y 1s a T-invariant complement to / in B. We may suppose that {(x)=Y so [x, T]=
=(x)NH=1.

4. Let B=Pe€Syl, (G). Then HNZ(P)#1 and we may assume that x{Z(P):

The first statement is obvious. If x€Z(P) then by Step 3. Cg(x)=PT=G
so G would have property T, and so would G=Cg4(X).

5. If p€n; then |n =2 and p is the bigger prime in #;. Let K€ Hall,. (G),
then PK<G:

Let K; be the normal a-complement in C;(x). If |z;]=1 or p is the smaller
prime then Cg4;(x)/K, and also Cg;(x) has a normal p-complement for every p-ele-
ment x€G#%. By Theorem B of [1] Cg(X) also has this property. By the Frattini
argument we have that TG and so Cg(HNZ(P))=PT=G has property T,,
contradiction. So |n;]=2 and p is the bigger prime. Then the Sylow p-subgroup
of C4z(x)/K, is normal for every n-element x€G#. So the {z’, p} Hall-subgroup
of Cg(x) is normal for every n-element x€G# and by Theorem B of [1] the {r’, p}
Hall-subgroup of G/H is also normal, so we have PK<G.

k k

6. Let K,eHall,. (G), then G/K,=)X B;, where n(B)Sr; and na=Jm; is
the above partition: A .

Let us suppose that it is not true, then Cg(X)/K;=(r,s) for some rén,;,
s€m,,j#Zm. By Theorem A in [1] then G/H=(r,s) and G=(r,s). We can dis-
tinguish three cases: a) {r, s}¥p, b) r=p, ¢) s=p.

In the case a) we apply property D,, and we have (r,s)=T=Cg(x), contra-
diction.

In the case b) if there exists a €, t¢ {p, s} then because of property D,, there
exists a Ue€Hall, (G) such that U/H contains a (p,s)-subgroup of G/H. As
P=U=G, by the inductive hypothesis U/H=Cyy(X) has property T in contra-
diction with the existence of a (p, s)-subgroup.

If m={p, s} then if n"=1 then as p€n;, s€n, j#=m, C;(x) is nilpotent for
every n-element x€G¥ and so by Theorem B in [1] G/H is nilpotent, contradiction.

If n’#1 then let UcHall,(G) such that U/H contains a (p, s)-subgroup
of G/H, so by induction we have contradiction as above. In the case c) let RS=G
be a subgroup of type (r,s). Then [R, S]=RNKP=1, contradiction.

7. G/K, is supersolvable:
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Let us consider G/K,/(X)= X B;. If there are at least two direct components,
1

then by induction G/K,/(X) and so G/K, are supersolvable. If there is only one
direct component, then we can distinguish two cases: a) pén(B,), b) pen(B)).

Case a) means that (x, H)€Syl, (G) abelian and we are done by Step 4.

In the case b) we are done if ]n(B,)l 1. Otherwise we have that |n(B,)|=2
and so |n|=2. Let G=K,N, where x¢Ne¢Hall, (G). Then G=KN, where
KeHall,. (G) and N is the inverse image of N in G‘. Then KH<G and by the
Frattini argument K<G. If K#1 then we apply induction on N to have that
N=G/K, is supersolvable. Otherwise N=G and we are done by Theorem C of [1].

Corollary 2.3. If G is a n-solvable group and for every m-element x€G*Cg;(x)
has property T, for a fixed partition of n then every n-character of Irr (G) is monomial.

Proor. Let G be a counterexample of minimal order, yclrr(G) is a non-
monomial n-character. By Theorem 2.2 we may suppose that Ker y=1. As our
conditions are hereditary to subgroups we can assume that y is primitive. Let
K=0,(G) then y|K=e3 and 9(1)=1. As Ker 3=K’ K has to be abelian. If
F(G),#1 then 1#Z(0,(G))=Z(G) for some pen. So G has property T,. Then
G/K is supersolvable, so by Theorem 6.22 and 6.23 of [4] G is an M-group. If
F(G),=1 then F(G)=K=Z(G)=F(G). By the m-solvability of G there exists a
pexn such that O (G/Z(G))*] Its inverse image is a nilpotent normal subgroup
in G in contradlctlon with F(G).=1.

k
Corollary 2.4. Let G be solvable, n=n(G) and n=U m ;=0 for i#j,

Inl=2 for i=1, ..., k. Let us suppose that for every x€G*Cgs(x)= )( A;, where A;
are wpersohab!e 7:(A) n;, then G is an M-group.
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