On the iteration of multiplicative functions

By I. KÁTAI (Budapest)

Dedicated to Professor Zoltán Daróczy on his 50th birthday

1. Consider a completely multiplicative function $\theta(n)$ such that for each prime p,

$$\theta(p) = p + a$$

for a fixed integer a>0. Let K_a be the set of primes p such that, for some integer n, p occurs infinitely often as a divisor of the sequence of iterates $\theta^{(k)}(n)$, where $\theta^{(k)}(n) = \theta(\theta^{(k-1)}(n))$. This set K_a becomes a directed graph, with its elements as nodes, if we connect a prime $p \in K_a$ to each of the primes which divide p+a (clearly these are also in K_a). These graphs K_a were introduced in [1], and it was proved that this set is finite, with largest element less than $2b^*a$, where b^* is the smallest prime not dividing a.

A more detailed study of these graphs has been given by R. M. POLLACK, H. N. SHAPIRO and G. H. SPARER in their very interesting paper [2]. They proved that the largest prime in K_a is at most $b^* + (b^* - 1)a$. Primes greater than a occur in K_a only on strings $p \rightarrow p + a \rightarrow p + 2a \rightarrow ...$ out of a prime $p \le a$, where p, p + a, ... are primes. They have considered the directed infinite graph U_a in which all the primes are nodes, and a directed edge goes from the prime p to the prime p if and only if p divides p + a. They observed furthermore that K_a is the minimal complete core U_a (Theorem 2.1 in [2]).

Let $\varkappa(n)$ be the minimal nonnegative integer h for which all the prime divisors of $\theta^{(h)}(n)$ belong to K_a , where $\theta^{(0)}(n)=n$. In terms of the graphs U_a , $\varkappa(n)$ is the maximum over all primes p dividing n of the length of the path from p to K_a . It is obvious that $\varkappa(n)=\max_{q|n}\varkappa(q)$, and $\varkappa(q)=1+\max_{p|q+a}\varkappa(p)$ if $\varkappa(q)\neq 0$, where p, q run over the primes satisfying the conditions p|q+a, q|n, respectively. In [1] we proved that

(1.2)
$$\limsup_{n \to \infty} \varkappa(n) (\log \log n)^{-1} > 0$$

and in [2] it was proved that

$$(1.3) \varkappa(n) = \mathcal{O}(\log n),$$

for all fixed a.

To determine the exact maximal order of $\kappa(n)$, or even the exact order of $\sum_{i=1}^{N} \kappa(n)$

130 I. Kátai

seems to be a very hard question. In this paper we shall prove that for almost all integers n, $\varkappa(n) > \eta \log \log n$, where η is a positive constant that may depend on a.

For a fixed a, let $\lambda(p)$ denote the length (i.e. the number of nodes) of the shortest path from the node p to K_a . In [2] it was proved that $\lambda(p) = \mathcal{O}(\log \log p)$ and the conjecture was stated that $\lambda(p) = \mathcal{O}((\log \log p)(\log \log \log p)^{-1})$ holds for almost all primes p. We can prove easily that much more is true concerning this last conjecture, namely that

(1.4) for almost all primes
$$p$$
, $\lambda(p) = 1$ or 2.

Let
$$\mathcal{P}_1 = \{q | \lambda(q) = 1\}, \ \mathcal{P}_2 = \{q | \lambda(q) \ge 3\}.$$

Let $Q_1, ..., Q_r$ be the set of the primes in K_a coprime to a. It is clear that this set is non-empty. Since $q \in \mathcal{P}_1$ if and only if $q \notin K_a$ and $q \equiv -a \pmod{Q_j}$ for at least one $j \in \{1, ..., r\}$, from the prime number theorem we get that

(1.5)
$$\frac{1}{\Pi(x)} * \{q \le x | \lambda(q) = 1\} \to 1 - \prod_{j=1}^{r} \left(1 - \frac{1}{Q_j}\right) = \delta(>0).$$

Therefore the relative density of \mathcal{P}_1 (in the set of primes) is positive. Let us estimate the number of those primes p, for which $\lambda(p) \ge 3$. If $\lambda(p) \ge 3$, then (q, p+a)=1 for each $q \in \mathcal{P}_1$. But by using sieve theorems (see Lemma 1) we get that

$$\#\{p \le x | (p+a, q) = 1 \ \forall \ q \in \mathscr{P}_1\} \ll \pi(x) \frac{1}{(\log x)^{\delta}},$$

which implies (1.4). We have proved moreover, that

$$(1.6) \qquad \frac{1}{\pi(x)} \, \sharp \{q \le x | \lambda(q) = 1\} \to \prod_{j=1}^r \left(1 - \frac{1}{Q_j}\right) \quad (x \to \infty).$$

2. In this section we shall estimate $\varkappa(n)$. We shall state Theorem 4.2 ([3]) as

Lemma 1. Let F(n) be a polynomial of degree $g(\ge 1)$ with integer coefficients. Then, for any set \mathcal{B} of primes,

$$\sharp \{p \colon p \leq x | (F(p), \mathcal{B}) = 1\} \leq c_{\theta} \prod_{\substack{p < x \\ p \in \mathcal{B}}} \left(1 - \frac{\varrho(p)}{p}\right) \prod_{\substack{p < x \\ p \in \mathcal{B} \\ p \mid F(0)}} \left(1 - \frac{1}{p}\right)^{-1} \frac{x}{\log x},$$

where c_g depends only on g, and $\varrho(p)$ denotes the number of solutions of $F(n) \equiv \varrho \pmod{p}$.

We shall apply this Lemma for F(p)=p+a, under the condition $(\mathcal{B}, a)=1$. So we have

$$(2.1) \qquad \sharp \{p \leq x | (p+a, \mathcal{B}) = 1\} \leq c \prod_{\substack{p < x \\ p \in \mathcal{B}}} \left(1 - \frac{1}{p}\right) \frac{x}{\log x}.$$

Let $\eta > 1$, z_1 be given, $z_n = z_1^{\eta n}$, $\zeta = \log \eta$, $y_n = z_{2n-1}$, $x_n = z_{2n}$. The values η , z_1 will be determined later. \mathcal{A}_1 , \mathcal{A}_2 , ... are some finite subsets of primes, defined as follows:

(1) for all n the elements of \mathcal{A}_n belong to (y_n, x_n) ,

(2) \mathcal{A}_1 is an arbitrary set,

(3) $p \in \mathcal{A}_{n+1}$ if and only if there exists $q \in \mathcal{A}_n$, such that $q \mid p+a$.

Let
$$S_n = \sum_{p \in \mathcal{A}_n} 1/p$$
, $T_n = \prod_{p \in \mathcal{A}_n} \left(1 - \frac{1}{p}\right)$. It is clear that

$$(2.2) T_n < e^{-S_n} (\leq 1).$$

Lemma 2. Let a be fixed. Then there exist positive numbers z^* , θ , such that for every \mathcal{A}_1 satisfying $z_1 > z^*$, $T_1 \leq \theta$, the inequality

$$(2.3) T_n \leq \theta$$

holds.

PROOF. It is enough to prove (2.3) for n=2. Let $x \ge y_2$. From Lemma 1 we get

$$\sum_{\substack{p \in \mathcal{A}_2 \\ x$$

Applying this inequality with $x=2^ky_2$ $(k=0, 1, ..., k_0)$, where k_0 is the largest integer for which $2^{k_0+1}y_2 \le x_2$, we get that

$$S_2 \geq \sum_{y_2$$

Since the first sum is $\log \frac{\log x_2}{\log y_2} + \mathcal{O}\left(\frac{1}{\log y_2}\right) = \zeta + \mathcal{O}\left(\frac{1}{\eta^3 \log z_1}\right)$, and the second is $\zeta + \mathcal{O}\left(\frac{1}{\log y_2}\right) = \zeta + \mathcal{O}\left(\frac{1}{\eta^3 \log z_1}\right)$, with an absolute constant in the order terms, we get

(2.4)
$$S_2 \ge (1 - 2cT_1)\zeta - \frac{c^*}{\eta^3 \log z_1},$$

with an absolute constant c^* . If z_1 is so chosen that $c^*/(\eta^3 \log z_1) < 1/2$, then from (2.2), (2.4) we get that

$$(2.5) T_2 \le e^{-(1-2cT_1)\xi} \left(1 + \frac{2c^*}{\eta^3 \log z_1}\right) < 2 \cdot e^{-(1-2cT_1)\xi}.$$

Let now be $\theta = \frac{1}{4c}$, ζ so large that $\zeta > \log 64$, and $4c \le e^{\zeta/3}$. Then the condition $T_1 \le \theta$ implies that $T_2 \le \theta$. Indeed, from (2.5) we get

$$T_2 < 2 \cdot e^{-\zeta/2} < e^{-\zeta/3} \le \theta.$$

By this the proof of our lemma is completed.

Theorem 1. Let a be a positive integer, $\varkappa(n)$ defined as above. Then there exists a constant $\lambda > 0$ such that

$$\frac{1}{\pi(x)} \# \{ p \le x | \varkappa(p) < \lambda \log \log p \} \to 0 \quad \text{as} \quad x \to \infty.$$

132 I. Kátai

PROOF. Let \mathscr{A}_1 be such a subset of primes for which the conditions of Lemma 2 are satisfied, and assume that $z_1 > b^* + (b^* - 1)a$. The last condition guarantees that $\varkappa(p) \ge 1$ for all the elements of \mathscr{A}_1 . Then for each n, $\varkappa(p) \ge n$ if $p \in \mathscr{A}_n$. This is obvious from the definition of \mathscr{A}_n and from the inequality $\varkappa(p) \ge 1 + \varkappa(q)$ if $q \mid p + a$ and $\varkappa(p) \ne 0$.

Let now X be a large number, and assume that $z_n < x \le z_{n+1}$. Let $b \ge 2$ be a fixed integer, $k \ge 1$. Then by Lemmas 1 and 2 for $\mathcal{B} = \mathcal{B}_{b,k} = \bigcup_{l=0}^{k} \mathcal{A}_{n-b-l}$ we have

$$\leq cT_{n-b}...T_{n-b-k}\frac{x}{\log x} \leq c\theta^k \frac{x}{\log x}.$$

If $(p, \mathcal{B}_{b,k}) > 1$, then $\varkappa(p) \ge n - b - k$. Let k be so large that $c\theta^k < 1/4$. Since

$$n \ge \frac{1}{2} \frac{\log \log X}{\log \eta},$$

with a suitable constant $\lambda_1 > 0$ we have

(2.7)
$$\#\{p|p\in[X,2X], \varkappa(p)>\lambda_1\log\log p\}>\frac{1}{2}\frac{x}{\log x},$$

say.

Let now

$$\mathcal{B} = \mathcal{B}_x = \{q | w < q < x, \ \varkappa(q) > \lambda_1 \log \log w\},$$

where $w=e^{(\log x)^{1/2}}$. If p is such a prime for which there exists q with q|p+a, then $\varkappa(p) \ge \lambda_1 \log \log w \ge \frac{\lambda_1}{2} \log \log x$. By Lemma 1,

$$\#\{p \leq x | (p+a, \mathcal{B}_x) = 1\} < c \prod_{q \in \mathcal{B}} \left(1 - \frac{1}{q}\right) \frac{x}{\log x}.$$

Since $\Pi\left(1-\frac{1}{q}\right)$ in the right hand side tends to zero, Theorem 1 has been proved.

3. Let h(a) denote the smallest prime which does not belong to K_a , and let H(a) be the largest prime which belongs to K_a .

It is clear that K_a contains all prime divisors of a. In [2] it was proved that $2 \in K_a$ for each $a \in \mathbb{N}$.

Let $Q_1 < Q_2 < ... < Q_R$ be the elements of K_n , and assume that $p \notin K_n$. It is clear that if Q is a prime, $Q|Q_j+n$, then $Q \in K_n$. Consequently $p \nmid Q_j+n$. Let $n \equiv l \pmod{p}$. If there is a prime π such that $\pi|n+Q_i$ for at least one Q_i (i=0,1,...,R), $Q_0=0$, and $\pi \equiv -l \pmod{p}$, then $p \in K_n$. Indeed, if $\pi|n+Q_i$, then $\pi \in K(n)$, since $p|\pi+n$, therefore $p \in K_n$.

Consequently, if $n \equiv l \pmod{p}$, then the numbers $n, n+Q_1, ..., n+Q_R$ do not contain prime divisors from the arithmetic progression $\equiv -l \pmod{p}$.

By using sieve results (see [3]) we get that

$$(3.1) \qquad \sharp \{n \in [X, 2X] | n \equiv s \pmod{p}, \pi \nmid n \text{ if } \pi \equiv -l \pmod{p}\} \leq$$

$$\leq c \frac{x}{p} \prod_{\pi \equiv -l \pmod{p}} \left(1 - \frac{1}{\pi}\right) \leq c \frac{x}{p (\log x)^{1/(p-1)}}$$

if (s, p)=(l, p)=1, p < x. Let

$$\mathcal{B}_p = \{n | \exists l \mod p, \ (l, p) = 1, \ \pi \nmid n \text{ if } \pi \equiv l \pmod p \}.$$

From (3.1) it follows that

Summing (3.2) for all the primes $p \le (\log \log x)(\log \log \log x)^{-1}$, the right hand side is o(x). Consequently we have

Theorem 2. For almost all n,

$$(3.3) h(n) \ge \frac{\log \log n}{\log \log \log n}.$$

By using the Turán—Kubilius inequality, hence we easily get the following **Theorem 3.** Let $\eta > 0$ be an arbitrary positive constant. Then

$$(3.4) H(n) \ge n^{1/2-\eta}$$

holds for almost all n.

PROOF. Let us consider the integers n in $\left[\frac{x}{2}, x\right]$. Let $q_1 < q_2 < ... < q_s$ be all the primes less than $(\log \log x)(\log \log \log x)^{-1}$. Let $S(n) = \prod_{j=1}^{s} (n+q_j)$, let $\mathscr P$ be the set of all the primes in $[x^{1/2-\eta}, x^{1/2}]$, and

$$f(n) := \sum_{\substack{p \mid S(n) \\ p \in \mathscr{P}}} 1.$$

Then, by the Turán—Kubilius inequality we have

$$\sum_{(x/2) \le n \le x} (f(n) - sA)^2 \le cxsA,$$

$$A = \sum_{p \in \mathscr{P}} \frac{1}{p} = \log \frac{\log 1/2}{\log \left(\frac{1}{2} - \eta\right)} + \mathcal{O}\left(\frac{1}{\log x}\right)$$

with a suitable constant c. Hence we get that

$$\sum_{\substack{f(n)=0\\(x/2)\leq n\leq x}}1=o(x)\quad (x\to\infty).$$

If for an $n \in \left[\frac{x}{2}, x\right]$ (3.3) holds and f(n) > 0, then K(n) contains all the q_i , and consequently all the primes p that divide S(n). But p|S(n), $p \in \mathscr{P}$ implies that $p > x^{1/2-\eta}$. This completes the proof of Theorem 3.

From the Turán—Kubilius inequality we can get an estimate for the cardinality of K_n as well. Let \mathscr{D}^* be the set of the primes in (q_s, x) ,

$$g(n) = \sum_{\substack{p \mid S(n) \\ p \in \mathcal{P}^*}} 1, \quad B := \sum_{p \in g^*} \frac{1}{p} = \log \log x - \log \log q_s + o(1).$$

Now

$$\sum_{n \le x} (g(n) - sB)^2 \le cxBs, \quad s = (\log \log x)(\log \log \log x)^{-1},$$

therefore

$$\sharp \left\{ n \le x, \, g(n) < sB - w \sqrt{sB} \right\} \le \frac{cx}{w}.$$

If $q_1, ..., q_s \in K_n$, then p|S(n), and $p \in \mathcal{P}^*$ belongs also to K_n . So we have

Theorem 4. Let $\varepsilon > 0$ be an arbitrary positive constant. Then

$$\operatorname{card}(K_n) > (1-\varepsilon)(\log\log n)^2(\log\log\log n)^{-1}$$

holds for almost all n.

References

- I. KATAI, Some problems on the iteration of multiplicative number-theoretical functions, Acta Math. Acad. Sci. Hung., 19 (1968), 441—450.
- [2] R. M. POLLACK, H. N. SHAPIRO and G. H. SPARER, On the graphs of I. Kátai, Communications on Pure and Applied Mathematics, 27 (1974), 669—713.
- [3] H. HALBERSTAM and H. E. RICHERT, Sieve methods, London 1974, Academic Press.

I. KÁTAI EÖTVÖS LORÁND UNIVERSITY COMPUTER CENTER BUDAPEST, H—1117 BOGDÁNFY U. 10/B

(Received January 27, 1987)