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1. Consider a completely multiplicative function 0(n) such that for each prime p,
(1.1) 0(p) =p+a

for a fixed integer a=0. Let K, be the set of primes p such that, for some integer

, p occurs infinitely often as a divisor of the sequence of iterates 0™ (n), where
9(“(11) 0(0*-"(n)). This set K, becomes a directed graph, with its elements as
nodes, if we connect a prime p€K, to each of the primes which divide p+a (clearly
these are also in K,). These graphs K, were introduced in [1], and it was proved
that this set is finite, with largest element less than 2b* a, where b* is the smallest
prime not dividing a.

A more detailed study of these graphs has been given by R. M. PoLLACK,
H. N. SuArirRO and G. H. SPARER in their very interesting paper [2]. They proved
that the largest prime in K, is at most b*+(b*—1)a. Primes greater than a occur
in K, only on strings p—~p+a—-p+2a—... out of a prime p=a, where p,p+a, ...
are primes. They have considered the directed infinite graph U, in which all the
primes are nodes, and a directed edge goes from the prime p to the prime g if and
only if ¢ divides p+a. They observed furthermore that K, is the minimal complete
core U, (Theorem 2.1 in [2]).

Let x(n) be the minimal nonnegative integer h for which all the prime divisors
of 6™ (n) belong to K,, where 0 (n)=n. In terms of the graphs U,, x(n) is the
maximum over all primes p dividing n of the length of the path from p to K,. It is
obvious that x(n):n:lz},xx(q), and x(q):l-i—mzi)g x(p) if x(q)#0, where p, ¢

run over the primes satisfying the conditions p|g+a, g|n, respectively. In [1] we
proved that

(1.2) lim sup %(n)(log log n)~* >0
and in [2] it was proved that

(1.3) x(n) = O(log n),

for all fixed a.

N
To determine the exact maximal order of % (n), or even the exact order of 3 x(n)
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seems to be a very hard question. In this paper we shall prove that for almost all
integers n, »(n)=nloglogn, where n is a positive constant that may depend on a.

For a fixed a, let 2(p) denote the length (i.e. the number of nodes) of the shortest
path from the node p to K,. In [2] it was proved that A(p)=0(loglogp) and the
conjecture was stated that A(p)=0((log log p)(log loglog p)~') holds for almost
all primes p. We can prove easily that much more is true concerning this last con-
jecture, namely that

(1.4) for almost all primes p, A(p)= 1or 2.

Let 2,={qli(9)=1}, Z,= {4l (9)=3}.

Let Q,, ..., O, be the set of the primes in K, coprime to a. It is clear that this
set is non-empty. Since g€, if and only if ¢¢K, and g=—a(mod Q;) for at
least one jé€{l,...,r}, from the prime number theorem we get that

(1.5) —I%Js;{quu(q) - 1—]}[1-Qij] - 3 0.

i=1

Therefore the relative density of 2, (in the set of primes) is positive. Let us estimate
the number of those primes p, for which A(p)=3. If i(p)=3, then (¢q,p+a)=1
for each ¢€#,. But by using sieve theorems (see Lemma 1) we get that

#Hp=xl(p+a,q) =179eP} < () Gog P
which implies (1.4). We have proved moreover, that
1 X - 1 ]
1.6 $g= = 1} —» ok AR,
(1.6) T He=@ =1 I{i-5) ==

2. In this section we shall estimate x(n). We shall state Theorem 4.2 ([3]) as

Lemma 1. Let F(n) be a polynomial of degree g(=1) with integer coefficients.
Then, for any set & of primes,

(,,>] [ 1]‘1 x
#Hp:p=x|(F(p).B)=1) = [1_9 | Pl ’
{p: p=x|(F(p).8) =1} =¢, P]_Zx ) ng p) logx
pER pER
plF(0)

where ¢, depends only on g, and ¢(p) denotes the number of solutions of F(n)=
=0(mod p).

We shall apply this Lemma for F(p)=p+a, under the condition (%, a)=1.
So we have

1 x
= - — = —
@1 Ho=xip+rad=1=sc ]! p] s
pedR
Let n=>1, z, be given, z,=zT, (=108 ", Ya=2s4-1, Xs=25,. The values g, z,
will be determined later. 7, &7, ... are some finite subsets of primes, defined as
follows:

(1) for all n the elements of &, belong to (¥,, X,),
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(2) &, is an arbitrary set,
(3) p€sf, ., if and only if there exists g€./,, such that g|p+a.

Let S,= 2 1/p,T,= ][] ]—;3]. It is clear that

pes, pEd,
(2.2) T,<e"n(=1)
Lemma 2. Let a be fixed. Then there exist positive numbers z*, 0, such that for
every of, satisfying z;=z*, T,=0, the inequality
(2.3) T,=0
holds.

Proor. It is enough to prove (2.3) for n=2. Let x=y,. From Lemma 1
we get

sip= 3L 312 3 oangn.
oo U a<pEc Pa<pEa x<pEn P

Applying this inequality with x=2%y, (k=0,1, ..., k,), where k, is the largest
integer for which 2% +!y,=x,, we get that

1 1
By el %ag—z—w

ye<p=2kotly P k=0

Since the first sum is log : :;’ +0 [ log;y ]=C+0 [ﬁ], and the second
2 2 1

is {+0 [ (— , with an absolute constant in the order terms,
log n® log z,

we get

(2.4) Sy = (1-2cT)L -

slogz

with an absolute constant ¢*. If z; is so chosen that ¢*/(n®log z;)<1/2, then from
(2.2), (2.4) we get that

(2.5) Ty = e~ U-%Tt [1+ il ] < 2.e-(-2Ta),

n®log z,
Let now be 9-——-, { so large that {=log64, and 4c=¢"3. Then the con-
dition 7;=0 implies that T,=0. Indeed, from (2.5) we get
Th<2eP<eR=0.
By this the proof of our lemma is completed.

Theorem 1. Let a be a positive integer, »(n) defined as above. Then there exists
a constant =0 such that

1
n(x)

#{p = x|x(p) < Aloglogp} -0 as x —eco.

g%
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Proor. Let <7, be such a subset of primes for which the conditions of Lemma 2
are satisfied, and assume that z,=b*+(b*—1)a. The last condition guarantees
that x(p)=1 for all the elements of «#,. Then for each n, x(p)=n if pcsf,. This
is obvious from the definition of 2/, and from the inequality x(p)=1+x(q) if
glp+a and x(p)=0.

Let now X be a large number, and assume that z,<x= :/:,,Jrl Let b=2 be a

fixed integer, k=1. Then by Lemmas 1 and 2 for Z=%, ;= U oA, _p-1 we have
I=0

(2.6) #HplpelX, 2X], (p, #,,) = 1} =
= g
S lopideie logx = i logx *

If (p,#,,)=1, then x(p)=n—b—k. Let k be so large that c6*<1/4. Since

b 1 loglog X
2 logn
with a suitable constant 1,=0 we have
1
@7 HplpelX, 2X], #(p) > Aloglog p) > 3 1o
say.
Let now

B =B, ={qlw < g < x, x(q) >/, loglogwj,
where w=e@&9"* If p is such a prime for which there exists ¢ with g|p+a, then
x(p)=2, log log wz% log log x. By Lemma 1,

x
logx *

Hp=xl(p+a,B)=1}<c ][] l_l]

gca
Since I1 [1 —%] in the right hand side tends to zero, Theorem 1 has been
proved. i

3. Let h(a) denote the smallest prime which does not belong to K,, and let
H(a) be the largest prime which belongs to K,.

It is clear that K, contains all prime divisors of a. In [2] it was proved that
2¢K, for each a€N.

Let Q,<Q,<...<Qg be the clements of K,, and assume that pd¢K,. It is
clear that if Q is a prime, Q|Q;+n, then Q¢K,. Consequently p{Q;+n. Let
n=/[(mod p). If there is a prime n such that n|jn+Q; for at least one Q;
(i=0,1, ..., R), Qy=0, and n= —I(mod p), then p€K,. Indeed, if n|n+Q;, then
n€ K(n), since pln+n, therefore p€K,.

Consequently, if n=/(mod p), then the numbers n, n+Q,, ...,n+ Qg do not
contain prime divisors from the arithmetic progression = —/(mod p).
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By using sieve results (see [3]) we get that
3.1) #{nel[X, 2X]|n = s(mod p), #fn if = =—I(modp)} =

& x
=C= 1-——) sc
P xz—i{Zmdp)[ k(s p(log x)la‘(l’—ll

if (s,p)=(,p)=1, p=x.
Let
A, = {n|3l modp, (I, p) =1, afn if = = I(mod p)}.
From (3.1) it follows that
(3.2) #{ne[X, 2X]neR,} = c

-
(]og x)lf(l’—l) 2

Summing (3.2) for all the primes p=(loglog x)(log log log x)~%, the right
hand side is #(x). Consequently we have

Theorem 2, For almost all n,

(3.3) k() = DB R D

logloglogn’
By using the Turan—Kubilius inequality, hence we easily get the following
Theorem 3. Let n=0 be an arbitrary positive constant. Then

(3.9) H(n) = n'/2-"

holds for almost all n.
Proor. Let us consider the integers n in [-;—, x] . Let ¢,<q,<...<gq, be all

5
the primes less than (log log x)(logloglog x)~*. Let S(n)= JJ (n+q,), let 2 be
j=1

the set of all the primes in [x'/*~", x'/?], and

f(n) =
piS(n)
pe@?

Then, by the Turan—Kubilius inequality we have
2 (f(n)—sA) = cxsA,

(x/2)=n=x

1 log 1/2 1
=27 e 5 : w(logx]
i

with a suitable constant ¢. Hence we get that

2 l1=205(x) (x=+<).
Sin)y=0
(x/2)=n=x
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If for an n¢€ [L;-, x] (3.3) holds and f(n)=0, then K(n) contains all the g;,

and consequently all the primes p that divide S(n). But p|S(n), p€2 implies that
p=x"*-", This completes the proof of Theorem 3.

From the Turdn—Kubilius inequality we can get an estimate for the cardinality
of K, as well. Let 2* be the set of the primes in (g, x),

gm= 23 1, B:= Z%=loglogx—loglogq,+o(l).

p|S(n) peEg*
pEP*
Now
2 (g(n)—sB)* = exBs, s = (loglog x)(logloglog x),
n=x
therefore

— X
#{n = x, g(n) < sB—wYsB} =—.

If q, ..., q,€K,, then p|S(n), and pe2* belongs also to K,. So we have
Theorem 4. Let =0 be an arbitrary positive constant. Then
card (K,) = (1 —¢)(log log n)*(log log log n)~1
holds for almost all n.
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