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1. Introduction

Following M. MATsumMOTO’s [2] ideas the theory of Finsler connections can be
considered as the theory of certain connections on the pullback of a principal frame
bundle. This theory can also be constructed using vector bundles instead of principal
bundles (MiroN [4], Opris [5]). From this point of view a Finsler connection over a
vector bundle £ is given by a homogeneous connection in the vector bundle ¢ and
by a linear connection in its vertical subbundle V¢. This approach is particularly
fruitful if we represent the tangent bundle t#/ of the total space 1/ as a special
Whitney sum of its subbundles, one of them being the vertical subbundle V¢, and
the other determined by the homogeneous connection. In this way we can extend
the linear connection to the whole tangent bundle t1/¢ of the total space of &. If
¢ is a tangent bundle of some manifold M this extension process turns out to be
canonical, and gives a possibility to reinterpret the differential invariants of the
Finsler connection under consideration in a compact form (Oproru [6]).

As it can easily be seen the homogeneous connection is used in the extension
process only for the construction of a special Whitney sum. In the present paper we
follow a more general way: we will consider general Whitney sums instead of
making use of homogeneous connections. Using Whitney sums several different
possibilitics emerge in order to gencralize the original extension process. In this
work we will study only the three most natural of them. To make the differences
clearer, in our definitions general nonlinear connections are used (in place of the
linear connections); however in the last part of the paper we will study the linear
cases also.

2. Basic notions and notations

Whitney-sums. The notion of Whitney sum will be the central idea of the
present paper.

1. Definition. Let &', n, £* be three vector bundles with common base spaces.
We say that the vector bundle n is the Whitney-sum of the vector bundles &' and &*
if there exists two short exact sequences
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and
oO-aLopgL.ni.o

in which all the maps are of constant rank and satisfy the conditions

(a) logl+1%0® = id,
and
(b) gor" =idp, (v=1,2).

In the case of Whitney-sums we unite the above two diagrams into one
1 * &
(%) O-- 1 -Ge g -5- &= 0.

This diagram is the dual short exact sequence determined by the Whitney-sum.

Connection theory. Let £ be a vector bundle and denote its vertical subbundle
by V&. A connection V is simply a direct sum decomposition of the tangent bundle
ttlé of the total space tlE, where one of the summands is the vertical subbundle V&
and the other is the horizontal subbundle of V denoted by Hy§. We will refer to a con-
nection by the special dual sequence

v, h £ ¥
W) 0 ~= (pr&) & = e ~3%~ (pr&) thsé ~- O
The maps hy and vy are called the horizontal and the vertical maps of the connec-
tion V.

As it is well known the vector bundle map ad; pr ¢ is an isomorphism on the
fibers between V¢ and ¢. In this notation the map

Dy:= ad; pr {ovy: Tl - &
is called the Dombrovski map of the connection V.

The local form of maps arising in connection theory.

Denote the local coordinates of a point of the base space bs¢ of & in a local co-
ordinate system by X', and the coordinates of an element of { in the local coordinate
system associated to the former by (x',y'). Then the coordinates of an element of
ttl¢ in the local coordinate system associated to (x,y') are (x!,y', x% y*%), where
x!, x*¢R*, n=dim bs¢; y*, y*¢ R™, m=rank .

1. Proposition, We can describe the above maps locally by the following for-
oA hy(x1, y1, X?) = (xl’ ¥, X3, @ (xY, y1)(x2))
vy(x yh x5 y2) = (x4, ¥, y2—o(x!, y')(x?))
Dy(x!, y', x2, y?) = (x', y*—o(x!, y)(x?))

where w(x', yY)(x®) is smooth in the variables x', y* and linear in x*.
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Proor. We can suppose that the local form of hy is
hv (xla }’l, x?) — (xls yls (?)(Xl, Y‘)(xz), OJ(XI, YI) (x2))

with some maps @(x', y')(x?) and w(x*, y*)(x*) which are smooth in the variables
xL, y!, and linear in x®. Because of the definition of a Whitney-sum the maps hy
and P satisfy the condition Pyohg=id,y(sez)1mse- The local version of this equation is

Pcol"v (xl: yl’ X’) = P{(xls Yl! &j(x’-, yl) (12)’ w(xl, yl) (xﬂ)) -
= (x1, !, &(x}, y)(x?) = (x, y%, x¥).
So @(x!, y)(x¥)=x>
The remaining part of the proposition can be proved by direct computations.

2. Definition. (1) We call the map o the connection form of the connection V.
(2) The connection V is linear if the map @(x!, y')(x?* is linear in y.

Connections are completely determined by their connection forms. Using this
fact and the local formulas the following statement is true

2. Proposition. A vector bundle map K: ttl§—~¢ is the Dombrovski map of some
connection iff
(D*) KIV{ = adg pr 601'{

where t; denotes the canonical isomorphism between V¢ and the pullback of & by its
projection.

3. Definition. Let (x(t), y(t)) be the local representant of a curve § of the
total space #/¢. We say that the curve § is parallel by V if it satisfies the differential
equation

(P) y(O)+o(x(0), y(0)(%(1) = 0.

In case of a Whitney-sum 5 as in (*) the local coordinates of an eclement will
be denoted by (x1, z!, v1, x3, 22, v?), where X', x®€R"; z}, z*€R", r=rank &'; v}, vV’€R®,
s=rank &2; r=s=rank n. Then the horizontal map hy of a connection V on n and its
Dombrovski map are described by

ho(x, 22, x8, 28) = (x!, 28, x3, Q'(x!, 21, 0)(xY))
and
D(x1, 2%, V1, x2, 22, v?) = (x, 22— Q' (x, z, v})(x2), v:—Q%(x}, 2}, v!)(x?)),
where the connection forms Q! and Q® are smooth in their arguments and linear
mnxs

3. Whitney-sums and Whitney-decompositions of connections

Let &, £* and 5 be vector bundles as above ().
4. Definition. (1) Let be given two vector bundle maps

K=t =& (v=1,2)
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determined on the vector bundles ¢! and &* respectively. Then the vector bundle map
K = 1'oK,0To' +1*0K,0Te*: ttly -1

is called the Whitney-sum of K, and K, by (*). (To" denotes the linearization of the
mapping ¢'.)
(2) Let
K: ttlp -9

be a vector bundle map. Then the maps
K, = g"oKoTi": 1tl* =& (v=1,2)

are called the Whitney-decompositions of the map K by ( *).
(3) The map

S(K) = (i'og")oKoT (1'og")+(1*0g*)oKoT (1*og?)

is the symmetric Whitney-projection of the map K by (*).
(4) The maps
AY(K) = @'oKoT®: ttlg® - &

A*(K) = g*oKoT*: wtle* - &2

are called the asymmetric Whitney-projections of K by ( *).

3. Proposition. (1) If in the above definition the vector bundle maps K, and K,
are Dombrovski maps of some connections V* and V* defined on the vector bundles
&Y and &2, and denoted by D, D, then there exists a connection V on the vector bundle
n such that its Dombrovski map is the Whitney-sum of the maps D, and D, by ().

(2) Let D be the Dombrovski map of the connection V defined on n. Then there
exist connections V* and V* defined on the vector bundles ¢* and ¢*, whose Dombrovski
maps are the Whitney-decompositions of D by ( *).

(3)The symmetric Whitney-projection of the Dombrovski map of any connection

defined on a vector bundle n is the Dombrovski map of some connection V defined on .

ProOOF. (1) Using trivializations of the vector bundles &' and &* with the help
of (#) one can construct a trivialization of # in which the local forms of the maps
08 D are:

1(x,2) = (x,2,0)

#(x,v) = (x,0,v)

x€R", zeRM, veRke
0*(x,z,v) = (x,2) ( )

0*(x,z,v) = (x,V)

where n=dim bsn, k;=rank !, ky=rank &=
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Then the local form of 71! is:

(TH)(xt, 22, x4, 2%) = [:1 (x1, z1), -%— (11(x1+ 1x2, 2+ tzg)]mo)] =

= [xl, z1,0; % (x2+1x2, z! + 122, 0)|,=n] = (x}, 2, 0, x* 28, 0).
The local form of the maps Ti%, To', Tp? can be computed similarly: Let x*, x*¢R",
z!, z2€RM, 1, v2¢R*, Then
Ti2(xt, vi, x2, v&) = (x3, O, V%, x2, 0, v®)
TQ!. (Xl, Zl, Vl, xz, 22’ v2) p— (xl‘ Zl, ng zﬂ)
To*(xt, 28, v4, x8, 28, v¥) = (2}, V4, <8, V).
If the local representatives of D, and D, are

D,(x, z!, x8, z8) = (x!, 2! —!(x!, 2!)(x?))
and
Dy(x1, V1, x2, v) = (x1, v3—w?(x!, v})(x?)),

then the local form of the map

D =1'oD,oTg!' +120D,0T0*
is the following:

D(xt, 2, v1, x3, 23, v®) = (sloD,)(x1, 21, x8, 28) 4+ (120 D) (x2, V2, X3, V8) =
= (xt, 22— 0 (¢, 2)(62), V-t (%, V) ()

By condition (D*) D is a Dombrovski map iff its restriction to the vertical subbundle
is equal to the map ad, prnor,.
A typical element of Vp locally has the form

L2, v, 0,24 V)

and the map ad,)pr nor, sends this into (x',2% v?); but this is equal to
D 2L v U2 7).
(2) The map D has the following local form (see page 3):

D(xt, 22, v1, x2, 22, v2) = (x}, 22— 01 (x4, 22, v3)(x?), v —2%(x, 22, vY)(x?)).
Then the map D,=¢'cDoTg' can be written locally as
D, (x4, 21, x2, 22) = (ploDoToY)(x, 2, x2, 22) =
('oD)(x1, 21, 0, x2, 22, 0) = (x1, 22— {1 (x}, 1, 0)(x?))

and this map satisfies condition (D"), so it is a Dombrovski-map.
(3). This statement is a direct consequence of statements (1) and (2). Q.E.D.

With the aid of the connections V, V1, V2, f?, ‘-71, V2and V appearing in Prop-
osition 3, we give the following
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5. Definition. (1) The connection V is called the Whitney-sum of the connec-
tions V! and V* by (*). _ 3 ;
(2) The connections V* and V2 are called the Whitney-decompositions of V

by (*).
(3) We call the connection V the symmetric Whitney-projection of the connec-

tion V, and denote it by F,,(?) if its Dombrovski map is equal to the symmetric
Whitney-projection of the Dombrovski map of V by (#).

4. Proposition. (1) The Whitney-decomposition operation is the conjugate of the
Whitney-sum operation: the Whitney-decompositions of the Whitney-sum of two con-
nections are the original connections.

(2) Geometric characterization of a connectfgn's Whitney-sum. The Whitney-sum

of the connections V* and V* is that connection V which can be characterized by the
following condition: any curve 7 of tly is parallel by V iff the curves ¢'c§ and p*cF
are parallel by the connections V' and V* respectively.

Proor. (1) The statement can easily be proved by the local formulas given
in the proof of the previous statement.

(2) Let (x(1),z(t), v(r)) be the local form of #(r). Then the local forms of
o'of and ¢%o§ are (x(1),z(¢)) and (x(7),v(t)) respectively. The local condition
for the parallelity by the connections V! resp. V* are the equations

(1) = o' (x(1), 2(1)) (X(1))
V(1) = @*(x(1), v(1)(x (D),

where o! and~m2 are the connection forms of V! and V2. If & denotes the connec-
tion form of V, then by (P), the local condition for parallelity of § is

(z(0), V() = Q(x(1), z(1), v(D) (X(1)).
Comparing these equations and using the linearity in X(f) we get
Q(x(0), (0, v(1)) (X (D) = &' (x(1), z(D) (X (1)) + & (x (D), V(D) (X(1)),

so the connection V is the Whitney-sum of V* and V2 by ( *). The converse way can
be proved with similar direct calculations. Q.E.D.

4, The invariance conditions and their local form

We can define three different types of invariance for connections on a Whitney-
sum of boundles:

6. Definition. (1) A connection V defined on a Whitney-sum bundle # is called
Wh-invariant by (%) if V=F_(V).

(2) A connection V is calied K-invariant by () if its horizontal map hy and
vertical map vy satis{y the following equations:

vyoT (1'0@")ohy =0 (v =1,2).
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(3) We call the connection VP-invariant by () if for any curve y of bsy the
parallel translation of any element from Im:" by V along 7y is also an element of
Im:* (v=1, 2).

The local description of W-invariance. Let n be the Whitney-sum of £' and
&2 as in (#). The Dombrovski map D of a connection on n is described at the end
of Section 2.

1. Theorem. (1) The local form of the Dombrovski map Dp«yy of V's symmetric
Whitney-projection F*(V) is

DF*(V)(XI'! zls vla x2! 22’ VS) = (x1$ 22_ 'Ql (x‘s zls 0) (XE)’ v2 _Q2(xl’ 09 vl) (xi)).

(2) The local forms of the asymmetric Whitney-projections of V's Dombrovski
maps are
A (D)(x4, v, x%, v¥) = (x!, —Q'(x1, 0, v1)(x?))
and
A(D)(x, v, X3, v3) = (xt, —Q3(x%, 22, 0)(x2)).

Proor. We make use of the local forms introduced in the previous part.
(1) The proof of the first statement is given by the following computations

Drvpy (X2, 2, V1, X2, 22, v?) =
((*0@Y)oDoT (itogY))(xY, z1, V1, X2, 22, v¥)+((120@»)oDoT (1*00?))(x!, 2 VI X2 22 v?) =
= (top")oD(x}, 21, 0, x2, 2%, 0)+(1*o0@®)oD(x}, 0, !, X3, 0, 2%) =

= (o) (x!, z2— Q' (x1, Z, 0)(x?), —Q2%(x%, 2%, 0)(x?))+

+(12o@?)(x!, —Q'((x', 0, v)(x?), v2—Q3(x1, 0, v!(x?))) =
= (x!, 22— Q'(x', z!, 0)(x?), v3— Q*(x%, 0, v!)(x?)).

(2) Because of symmetry we prove the first part only:
A (D)(xY, v, x2, v?) = (g'oD)(x!, O, v, x%, 0, v2) =
= g'(x, —Q'(x}, 0, v})(x?), v2—Q2(x%, 0, v!)(x?)) = (x, —Q(x%, O, V})(x2)).

5. Proposition. A connection V is W-invariant iff the equations

2(x', 2, vt) = Q'(x!, 2, 0)
and

22(x1, 21, v¥) = (3(x3, 0, v?)
are satisfied.

PRroOOF. By direct computations using the previous proposition.

Now we will describe the conditions for the structure of the horizontal sub-
bundle of V implied by the invariance conditions. First we prove a statement about
the horizontal subbundles of the Whitney-projection of a connection.

6. Proposition. Let the connections V' and V*® be the Whitney-projections of
the connection V by (*). Then the horizontal subbundles of V' and V* have the fol-
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lowing forms:
Hyv =To"(Hylimr) (v=1,2)

where Hy is the horizontal subbundle of V.

Proor. We prove the case v=1 only. The Dombrovski map of the connection
V! can be represented locally in the form

Da(x}, 2%, x3, 22) = (x3, 22— Q(x1, Z%, 0)(x2)),
so its horizontal map is
hor (x1, 22, X3, 22) = (x1, 21, X2, Q'(x, 1, 0)(x?))
which means that a typical element of Hgyi(=Im hg) has the following form
(0) (x1, 21, x2, Q1(x1, 21, 0)(x?)).
The typical element of the horizontal subbundle of V is
(x4, 2%, v, x3, Q(x*, 21, vi)(x®), C3(xt, 21, vi)(x%)).
If we restrict Hy to the image of i* we get
(x1, 21, 0, x2, Q1(x1, 21, 0)(x2), 22(x%, Z', 0)(x2)),
and the map Tp! sends this exactly into (¢). Q.E.D.
Suppose that V! and V* are connections on vector bundles ¢! and &2

2. Theorem. If the horizontal subbundles of the connections V' and V* are de-
noted by Hy and Hy: then the horizontal subbundle of their Whitney-sum by (%) is

Hy = (To") ™" (Hy)N(Te*)"* (Hye).

Proor. The horizontal subbundle of a connection is exactly the kernel of its
Dombrovski map, and the Dombrovski map of the Whitney-sum is

D = toDpoTe! +120Dy:0T 02
Then
D(v) = (i'oDuioTe")(v)+(1*oDg:0Te*)(v) = 0

is true just in the case when (1'oDyuioTp")(v)=0 and (1*0Dy:0Tp*(v)=0 is sat-
isfied, since Im/*MNIm2=@. But maps i',:* are injections, so this is equiv-
alent with (Dgpi0Tp")(v)=0 and (Dg:0Tp*(v)=0. This means that D(v)=0 iff
(ToY)(v)eKer Dy and (To?) (v)eKer Dy,

v€(Te") " (Hy) (\(Te*) " (Hype),
and this proves our statement.
The above consideration yields also the

7. Proposition. The horizontal subbundle of the symmetric Whitney-projection
of the connection V is

(Te) ™ [(Te) Hylim)]IN(T*) 7 [(TQ*) (Hylimw)]-
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8. Corollary. The necessary and sufficient condition for the W-invariance of the
connection V is that its horizontal subbundle satisfies the relation

Hy = (Te) 7 [(Te")(Hylim )]1N(T2*) " [(T2%) (Hylim )]
The local description of P-invariance.

3. Theorem. Denote by V the same connection as in the previous part. Then
the necessary and sufficient conditions for the P-invariance of V are the equations

I) Q1(x4,0,z21) =0
and
1I) (x4, v, 0) = 0.

Proor. We will prove only II) because of the symmetry of the above equations.

Sufficiency. The local form of the curve y(¢) of tly is (x(1), z(?), v(1)). Sup-
pose that y(t,) is an element of Im . Then y(t,) has the form (x(t,), z(t), 0).

Now consider the following initial value problems for z(r):
Z(1) = @' (x(1), (1), 0)(k(1)  Z(ty) = 2(ty)-

If Z(¢) is the solution of this system, then in view of our assumption II) Z() and
v(t)=0 is a solution of the following first order system of differential equations:

Z(1) = Q'(x (1), Z(1), V(1)) (X (1))
V(1) = Q' (x (1), Z(1), () (X (1)

This means the parallelity of (z(r), 0)éIm* in n with respect to V. Now the suffi-
ciency is a direct consequence of the unicity of the solutions of this system of dif-
{crential) equations and of the fact that (z(r),0) is the parallel translated of
z(1,), 0).

Necessity. Let us suppose that the above equation of parallelity with initial
condition (Xo,Zy, 0) has a solution of the form (x(1),z(r), v(¢)) (v(t)=0). This
implies that Q2*(x(r), z(r), 0)=0, and because x(r) and z(f) can take any value
this equation gives exactly the necessity part of the proposition. Q.E.D.

The local form of K-invariance. At the end of this part we give an equivalent
condition for the K-invariance in terms of connection forms and/or horizontal sub-
bundles.

4. Theorem. The necessary and sufficient conditions for the K-invariance of the
connection V are the local equations

Q(xt, z4, v) = Q'(x1, 21, 0) Q'(x1,0,v)) =0

Q(x1, z4, v!) = Q'(x1, 0, v!) £*(x},2%,0)=0.
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PRrROOF. Suppose that V is K-invariant by (#). Then according to 6. Definition
(2) vyoT(i'og')ohy=0. Calculating this in a local form we obtain

(vgoT (1*o@)ohy)(x}, 22, V2, x2) =
(x1, 21,0, x2,+ Q1(x1, 21, v1)(x¥)— Q' (x!, 2!, 0)(x2), —Q2(x!, z, 0)(x?) = (x!, Z1, 0, x, 0, 0).

This gives the first and fourth equations of our Theorem. The second and third
equations follow from wgoT(i209*ohy=0. Thus the conditions of the Theorem
are necessary. — The sufficiency part of the statement can be proved simply by
retracing the above computations. Q.E.D.

9. Proposition. The connection V is K-invariant by (#) iff its maps T(i*og")
and T(i%c9® leave the horizontal subbundle Hy invariant.

Proor. If V K-invariant, then for any a€t/(pr &)!thsé
(vgoT (1*0@")ohg)(a) =0 (v=1,2)

is satisfied, and so

vy ((T(1¥0g@")ohy)(a)) = 0.
This means that in this case (7(i*og"))(hy(a))éKervg=Hy ie. T(1"0p") leave
Hy invariant. But we have proved with this also the sufficiency part of the statement
because the above the equations are equivalent. Q.E.D.

5. Relationships between the different invariances

5. Theorem. A connection V is K-invariant by (*) iff it is both W-invariant and
P-invariant.

Proor. The local condition of W-invariance is Q'(x%, z!, v1)=Q'(x%, z1, 0) and
Q3 (x4, zt, v1)=Q2(xY, 0, v!). The local condition of P-invariance is Q'(x%, 0, v})=0
and Q%(x!,z',0)=0. If we compose these two local conditions we get the local
condition of K-invariance and the decomposition of the condition of K-invariance
yields the conditions of W- and of P-invariance. Q.E.D.

As it can be seen from the local conditions, in the nonlinear case the condition
of [P-invariance and that of W-invariance] are independent in general.

6. Theorem. If the connection V is linear then the W-, K-, and P-invariances
by (*) are equivalent.

ProOF. Because of the previous Theorem it is sufficient to prove that the no-
tions of W- and P-invariance are the same when the connection V is linear.
If V is linear, then Q', Q® appearing in its Dombrovski map locally has the form

D(x, 2!, ¥, X%, 22, v3) = (x1, 22— Q1 (x!, 2%, V1) (x3), Vi — Q*(X', 21, v1)(x2))
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where the maps Q' and @? are linear, and so
Q'(x!, z, v!) = Q'(x!, z}, 0)+ Q'(x, 0, v!)
Q%(x1, z, V') = Q*(x%, 2%, 0)+ £2%(x%, O, v1).

Substracting from these the corresponding local conditions of W-invariance we
obtain the local conditions of P-invariance , and conversely. Q.E.D.
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