On rank of apparition of primes in Lucas sequences

By PÉTER KISS* (Eger)

Dedicated to Professor Zoltán Daróczy on his 50th birthday

Let $R = \{R_n\}_{n=0}^{\infty}$ be a sequence of Lucas numbers defined by the recursion

$$R_n = A \cdot R_{n-1} + B \cdot R_{n-2},$$

where A and B are fixed non-zero integers and the initial terms are $R_0=0$, $R_1=1$. Denote the roots of the characteristic polynomial x^2-Ax-B of the sequence by α and β . Throughout this paper we assume that R is a non-degenerated sequence, i.e. α/β is not a root of unity.

If p is a prime and $p \nmid B$ then, as it is known, there are terms in the sequence divisible by p. If $p \mid R_n$ but $p \nmid R_m$ for 0 < m < n, then we say that n is the rank of the apparition of p in the sequence and we denote it by r(p). We also say that p is a primitive prime divisor of R_n if r(p)=n. We know that R_n has at least one primitive prime divisor for any $n > n_0$, where n_0 is an absolute constant (see e.g. C. L. Stew-ART [4]) and r(p) is a divisor of p-(D/p) for any prime with $p \nmid B$, where $D=A^2+4B$ and D(D/p) is the Legendre's symbol with D(D/p)=0 in case D(D/p)=0 in the primitive prime divisors of a term D(D/p)=0 in the form D(D/p)=0 in the primitive prime divisors of a term D(D/p)=0 in the form D(D/p)=0 but we do not know how large k is in general or how small can be the ratios D(D/p)=0.

It is clear that $r(p)/p \le 1+1/p$, but from a result of [2] it follows that r(p)/p can be arbitrarily small. We note that this also follows from a result of D. JARDEN ([1], p. 5) if R is the Fibonacci sequence. In this paper we give bounds for the average order of the ratios r(p)/p which yield some results on the primitive prime divisors of Lucas numbers.

In the results and in their proofs $c_1, c_2, ..., x_1, x_2, ...$ will denote positive constants which are absolute ones or they depend only on the sequence R. Furthermore we assume r(p)=0 if p|B.

Theorem 1. There are positive constants c_1 and c_2 such that

$$c_1 \cdot \frac{\sqrt{x}}{\log x} < \sum_{p \le x} \frac{r(p)}{p} < c_2 \cdot \frac{x}{\log x}$$

for any $x > x_1$.

^{*} Research supported by Hungarian National Foundation for Scientific Research grant No. 273.

148 Péter Kiss

Theorem 2. There are positive constants c_3 and c_4 such that

$$c_3 \cdot \frac{\sqrt{x}}{\log x} < \sum_{\substack{p \ r(p) \le x}} \frac{r(p)}{p} < c_4 \cdot x$$

for any $x > x_2$.

The magnitude of prime and primitive prime divisors of Lucas numbers was investigated in many papers (see C. L. Stewart [5] and its exhaustive references). Among others it was proved that for almost all natural numbers n the greatest primitive prime divisor of R_n is greater than $\varepsilon(n) \cdot n \cdot (\log n)^2/\log \log n$, where $\varepsilon(n)$ is any real valued function for which $\varepsilon(n) \to 0$ as $n \to \infty$. The following corollary shows that n^2 is an upper bound for infinitely many primitive prime divisors.

Corollary 1. Let x and c be real numbers with the conditions 0 < c < 1/2 and x > x(c, R), where x(c, R) depends only on c and the sequence R. Then there are at least x^c primes p for which $p \le x$ and $p < (r(p))^{1/c}$.

It is known that $|R_n| < e^{c_6 n}$ for any n > 0 and, as we have seen, $p \ge n-1$ if r(p) = n. From these it follows that R_n has at most $c_6 n/\log n$ primitive prime divisors and the trivial estimation

$$\sum_{\substack{p \\ r(p)=n}} \frac{1}{p} < \frac{c_7}{\log n}$$

holds for any n>1. From Theorem 2 a better estimation follows for almost all n which shows a connection between the magnitude and the number of primitive prime divisors of the Lucas numbers.

Corollary 2. For any $\delta > 0$

$$\sum_{\substack{p \\ r(p)=n}} \frac{1}{p} < \frac{\delta \cdot \log n}{n}$$

for almost all n, i.e. for all natural numbers n except perhaps for those in a set of asymptotic density zero.

Now we prove our results.

PROOF OF THEOREM 1. The right inequality trivially holds because

$$\frac{r(p)}{p} \le \frac{p+1}{p} = 1 + \frac{1}{p}$$

for any p and

$$\sum_{n \le x} \frac{1}{p} = \mathcal{O}(\log \log x).$$

Let a(n) be an arithmetical function such that a(n)=r(n) if n is a prime number and a(n)=0 otherwise. Then for any sufficiently large x

(1)
$$S_x = \sum_{p \le x} \frac{r(p)}{p} = \sum_{n \le x} a(n) \cdot \frac{1}{n}.$$

Before we estimate the sum S_x we give a lower estimation for the sum

$$A(x) = \sum_{n \le x} a(n).$$

There are $\pi(x)-c_8$ summands in A(x) different from zero and, as we have seen above, there are at most $c_6 n/\log n$ primes for which r(p)=n. But, using Euler's summation formula,

$$\sum_{n \leq c_0 \sqrt{x}} \frac{c_6 n}{\log n} = c_6 \cdot \int_2^{c_0 \sqrt{x}} \frac{t}{\log t} dt + \mathcal{O}\left(\frac{\sqrt{x}}{\log x}\right) < c_{10} \cdot \frac{x}{\log x},$$

where co can be chosen such that

$$c_{10}\cdot\frac{x}{\log x}<\pi(x)-c_8,$$

and so

$$(2) A(x) > \sum_{n \le c_0 \sqrt{x}} n \cdot \frac{c_6 n}{\log n} = c_6 \cdot \int_2^{c_0 \sqrt{x}} \frac{t^2}{\log t} dt + \mathcal{O}\left(\frac{x}{\log x}\right) > c_{11} \cdot \frac{x \cdot \sqrt{x}}{\log x}.$$

Using Abel's identity, by (1) and (2)

$$S_x = \frac{A(x)}{x} + \int_2^x \frac{A(t)}{t^2} dt + \mathcal{O}(1) >$$

$$> c_{11} \cdot \frac{\sqrt{x}}{\log x} + c_{11} \cdot \int_2^x \frac{dt}{\sqrt{t} \cdot \log t} + \mathcal{O}(1) > c_{12} \cdot \frac{\sqrt{x}}{\log x}$$

follows which proves the left inequality of the theorem.

PROOF OF THEOREM 2. The left inequality follows from Theorem 1 since $r(p) \le x$ for any prime for which $p \le x-1$.

Let x be a sufficiently large number and let p be a prime such that $p \le x$ and $r(p) = n \le x$. Then there is an integer k such that p = kn + 1 or p = kn - 1 and $k \le \frac{x+1}{n}$ and so, using that $\sum_{k \le x} 1/k = \log t + \mathcal{O}(1)$,

(3)
$$\sum_{\substack{p \ r(p)=n}} \frac{1}{p} \le \frac{1}{n-1} + \frac{1}{n+1} + \frac{1}{2n-1} + \frac{1}{2n+1} + \dots =$$

$$= 2 \cdot \sum_{\substack{k \le (x+1)/2n}} \frac{1}{kn} + \mathcal{O}\left(\frac{1}{n}\right) = \frac{2}{n} (\log x - \log n) + \mathcal{O}\left(\frac{1}{n}\right)$$

follows. Since

$$\sum_{\substack{p \\ r(p) \le x}} \frac{r(p)}{p} = \sum_{n \le x} \left(n \cdot \sum_{\substack{p \\ r(p) = n}} \frac{1}{p} \right),$$

by (3) we have

(4)
$$\sum_{\substack{p \ r(p) \le x}} \frac{r(p)}{p} \le 2 \cdot \sum_{n \le x} (\log x - \log n) + \sum_{\substack{p > x \ r(p) \le x}} \frac{r(p)}{p} + \mathcal{O}(x).$$

150 Péter Kiss

We have seen that there are at most $c_6 n/\log n$ primes p for which r(p)=n, furthermore

$$\sum_{n \le x} \frac{c_6 n}{\log n} < c_{13} \cdot \frac{x^2}{\log x}$$

and there are at most $c_{13}x^2/\log x$ primes not exceeding $c_{14}x^2$, therefore

(5)
$$\sum_{\substack{p>x\\r(p)\leq x}}\frac{r(p)}{p}\leq x\cdot\sum_{\substack{p>x\\r(p)\leq x}}\frac{1}{p}\leq x\cdot\left(\sum_{\substack{p\leq c_{14}x^2}}\frac{1}{p}-\sum_{\substack{p\leq x}}\frac{1}{p}\right)=\mathcal{O}(x).$$

On the other hand

(6)
$$\sum_{n \le x} \log x = x \cdot \log x + \mathcal{O}(\log x)$$

and

(7)
$$\sum_{n \le x} \log n = x \cdot \log x - x + \mathcal{O}(\log x)$$

and so (4), by (5), (6) and (7), implies the right hand inequality of the theorem which completes the proof.

PROOF OF COROLLARY 1. Suppose that there are at most x^c primes p such that $p \le x$ and

$$\frac{r(p)}{p} > \frac{1}{p^{1-c}}.$$

Then, using that $r(p) \le p+1$ and so $r(p)/p \le 1+\frac{1}{p}$ for any prime, with the notation $y=\pi(x)-x^c$ we have

(8)
$$\sum_{p \le x} \frac{r(p)}{p} < \sum_{n \le y} \frac{1}{p_n^{1-c}} + x^c + \sum_{n \le x^c} \frac{1}{p_n} < \sum_{p \le x} \frac{1}{p^{1-c}} + x^c + \emptyset (\log \log x),$$

where p_n is the n^{th} prime. But

$$\sum_{p \le x} \frac{1}{p^{1-c}} = \mathcal{O}\left(\frac{x^c}{\log x}\right)$$

and so (8) contradicts Theorem 1 if x is sufficiently large since c < 1/2. Thus there are at least x^c prime numbers p not exceeding x for which

$$\frac{r(p)}{p} > \frac{1}{p^{1-c}}.$$

For these primes by (9)

$$p<\big(r(p)\big)^{1/c}$$

which proves the assertion.

PROOF OF COROLLARY 2. Let x and δ be positive numbers and let N_x be the set of natural numbers n for which $n \le x$ and

$$\sum_{\substack{p \\ r(p)=n}} \frac{1}{p} \ge \frac{\delta \cdot \log n}{n}.$$

If $|N_x| = \varepsilon x$, where $|N_x|$ denotes the cardinality of the set N_x , then

$$\sum_{\substack{p \\ r(p) \le x}} \frac{r(p)}{p} = \sum_{\substack{n \le x}} \left(n \cdot \sum_{\substack{p \\ r(p) = n}} \frac{1}{p} \right) \ge \sum_{\substack{n \le \varepsilon x}} \delta \cdot \log n =$$

$$= \delta \cdot \left(\varepsilon x \cdot \log \varepsilon x - \varepsilon x + \mathcal{O}(\log x) \right)$$

which does not contradict Theorem 2 only if $\varepsilon \to 0$ as $x \to \infty$. From this the corollary follows.

References

[1] D. JARDEN, Recurring sequences, Riveon Lematematika, Jerusalem (Israel), 1958.

[2] P. Kiss and B. M. Phong, On a function concerning second order recurrences, Ann. Univ. Sci. Budapest Eötvös, 21 (1978), 119-122.

- [3] D. H. LEHMER, An extended theory of Lucas' function, Ann. of Math., 31 (1930), 419—448.
 [4] C. L. STEWART, Primitive divisors of Lucas and Lehmer numbers, Transcendence theory: advances and applications, A. Baker and D. W. Masser ed., London and New York, 1977.
- [5] C. L. STEWART, On the greatest prime factor of terms of a linear recurrence sequence, Rocky Mountain J. of Math., 15 No. 2 (1985), 599-608.

TEACHER'S TRAINING COLLEGE DEPARTMENT OF MATHEMATICS LEÁNYKA U. 4 H—3301 EGER, HUNGARY

(Received February 26, 1987)