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Let R={R,};~, be a sequence of Lucas numbers defined by the recursion
Rn =4- Rn—l +B- Rn-z,

where A and B are fixed non-zero integers and the initial terms are R,=0, R,=1.
Denote the roots of the characteristic polynomial x*—Ax—B of the sequence by
o and . Throughout this paper we assume that R is a non-degenerated sequence,
1.e. a/f 1s not a root of unity.

If p is a prime and p{B then, as it is known, there are terms in the sequence
divisible by p. If p|R, but p{R,, for O0=m=n, then we say that n is the rank of
the apparition of p in the sequence and we denote it by »(p). We also say that p is
a primitive prime divisor of R, if r(p)=n. We know that R, has at least one primitive
prime divisor for any n=-n,, where n,is an absolute constant (see e.g. C. L. STEW-
ART [4]) and r(p) is a divisor of p—(D/p) for any prime with p{B, where D=A*+
+4B and (D/p) is the Legendre’s symbol with (D/p)=0 in case p|D (see e.g.
D. H. LeaMeR [3]). Thus the primitive prime divisors of a term R, are of the form
p=nk+1 but we do not know how large k is in general or how small can be the
ratios r(p)/p.

It is clear that r(p)/p=1-+1/p, but from a result of [2] it follows that r(p)/p
can be arbitrarily small. We note that this also follows from a result of D. JARDEN
([1], p. 5) if R is the Fibonacci sequence. In this paper we give bounds for the average
order of the ratios r(p)/p which yield some results on the primitive prime divisors
of Lucas numbers.

In the results and in their proofs ¢, ¢y, ..., X1, Xg, ... will denote positive
constants which are absolute ones or they depend only on the sequence R. Further-
more we assume r(p)=0 if p|B.

Theorem 1. There are positive constants ¢, and ¢, such that

Vx r(p) x
log x ‘:,é; P TR log x

(4]

Jfor any x=x,.
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Theorem 2. There are positive constants ¢y and cg such that

Vx r(p)
o log x ; p e
rip)=x
for any x=x,.

The magnitude of prime and primitive prime divisors of Lucas numbers was
investigated in many papers (see C. L. STEWART [5] and its exhaustive references).
Among others it was proved that for almost all natural numbers » the greatest prim-
itive prime divisor of R, is greater than &(n)-n-(log n)?/log log n, where &(n) is
any real valued function for which &(n)—-0 as n—<. The following corollary
shows that »n* is an upper bound for infinitely many primitive prime divisors.

Corollary 1. Let x and ¢ be real numbers with the conditions O0<c<1/2 and
x=>x(c, R), where x(c, R) depends only on ¢ and the sequence R. Then there are
at least x° primes p for which p=x and p=(r(p))'°.

It is known that |R,|<e" for any n=0 and, as we have seen, p=n—1 if
r(p)=n. From these it follows that R, has at most c¢n/logn primitive prime di-
visors and the trivial estimation

Cy
logn

1
_——
; P
Hp)=n

holds for any n=1. From Theorem 2 a better estimation follows for almost all n
which shows a connection between the magnitude and the number of primitive
prime divisors of the Lucas numbers.

Corollary 2. For any 6=0
1 d-logn
P
-
r(p)=n
for almost all n, i.e. for all natural numbers n except perhaps for those in a set of
asymptlotic density zero.

Now we prove our results.
Proor oF THEOREM 1. The right inequality trivially holds because

p p p
for any p and

¥ L 8 0 (log log x).
p=x P

Let a(n) be an arithmetical function such that a(n)=r(n) if n is a prime number
and a(n)=0 otherwise. Then for any sufficiently large x

M Se=3 T2 = 5oL

1
p=x P n=x n
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Before we estimate the sum S, we give a lower estimation for the sum

A(x) = 3 a(n).

nEX

There are m(x)—cy summands in A(x) different from zero and, as we have
seen above, there are at most cgnflogn primes for which r(p)=n. But, using
Euler’s summation formula,

AL
cen ¢ et [ Vx 0
ﬁczﬁ logn 8 ;f log t R logx) = 1 Togx’

where ¢, can be chosen such that

X
0 Tog % < n(x)—Cg,
and so
@ AW> 3 n-t = jr Carvo( =) = e X x-Vx
7 logn 8 J logt log x ‘1 Jogx |

nscyfx

Using Abel’s identity, by (1) and (2)
Ax) | £ A@)
Sy = +=f - di+0(1) >

Vx

__+c . —_—
ogx * JV’I-Iogt

Vx

+0(1)> (.'12'@

ST

follows which proves the left inequality of the theorem.

PrOOF OF THEOREM 2. The left inequality follows from Theorem 1 since r(p)=x
for any prime for which p=x—1.

Let x be a sufficiently large number and let p be a prime such that p=x and
r(p)=n=x. Then there is an integer k such that p=kn+1 or p=kn—1 and

k=>*1 and so, using that 3 1/k=log 1+0(1),
kst
1 1 1 1 1
) . ;é n—l+n+l+2n—l+2n+l+'""
r(p)=n
=2. 2 : +0[l] = —2'-(10 x—lo n)+0[l]
T et kn n) = n Vo8 g n
follows. Since
r(p) _ [ _ l]
; p E e ,,Z p)’
rip)=x r(p)=n
by (3) we have
r(p) (p)
4 » = =2. > (logx—log n)+ Z S ——=+0(x).
n=x p>x

r
r(pisx r(p)=x
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We have seen that there are at most cgnflog n primes p for which r(p)=n,
furthermore

CeN x*
G’ log x

5 T

n=x log n

and there are at most ¢,;x*/log x primes not exceeding c¢,4x2 therefore

) 3 I0) 2., 2'—1-53:-[ > 1-2-‘-]=a)(x).
p=x p=x P pir,,x'p p=x P
rip)=x r(p)=x
On the other hand
(6) 2 logx = x-log x+0(log x)
n=x
and
(7) 2 logn = x-logx—x+0(log x)

n=x

and so (4), by (5), (6) and (7), implies the right hand inequality of the theorem which
completes the proof.

PrROOF OF COROLLARY 1. Suppose that there are at most x° primes p such that
p=x and
)
piTEt
Then, using that r(p)=p+1 and so r(p)/p=1 +% for any prime, with the nota-

tion y=mn(x)—x° we have

®) > r(p) PR pl 4+ x° 4 Z —_—-= -I%+x‘+0(log log x),

paEx P n=y n=x¢ Pn P=x

where p, is the n'® prime. But

2

2.7 Iogx]

and so (8) contradicts Theorem 1 if x is sufficiently large since c¢<1/2.
Thus there are at least x prime numbers p not exceeding x for which

rip) _ 1 _
P gl

p < (r(p)Ve

®)
For these primes by (9)

which proves the assertion.

PRrOOF OF COROLLARY 2. Let x and  be positive numbers and let N, be the
set of natural numbers n for which n=x and

2—=

r(P)*ﬂ

bEx
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If |N,|=ex, where |N,| denotes the cardinality of the set N,, then

= er) =£,;[ﬂ- %’ %] %ngxé-lognz

r(,p{ﬁx r(p)=n
= & (ex-log ex —ex+0(log x))

which does not contradict Theorem 2 only if ¢é-0 as x-o. From this the cor-
ollary follows.

References

[1] D. JaArDEN, Recurring sequences, Riveon Lematematika, Jerusalem (Israel), 1958.

[2] P. Kiss and B. M. PHONG, On a function concerning second order recurrences, Ann. Univ. Sci.
Budapest Edtvas, 21 (1978), 119—122.

[3] D. H. LenMeR, An extended theory of Lucas’ function, Ann. of Math., 31 (1930), 419—448.

[4] C. L. STEWART, Primitive divisors of Lucas and Lehmer numbers, Transcendence theory:
advances and applications, A. Baker and D. W. Masser ed., London and New York,
1977.

[5] C. L. STEWART, On the greatest prime factor of terms of a linear recurrence sequence, Rocky
Mountain J. of Math., 15 No. 2 (1985), 599—608.

TEACHER'S TRAINING COLLEGE
DEPARTMENT OF MATHEMATICS
LEANYKA U, 4

H—3301 EGER, HUNGARY

( Received February 26, 1987)



