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1. Introduction

Let R be an integral domain (with identity), a€ R and A5,={0, 1, ..., m} for
some positive integer m. We shall say that {«, A3} is a canonical number system,
if every y€R can be uniquely represented as

(1.1)
Y= Gy+aa+...+ a0, where a€cAH; for i=0,1,...k, a#0 if k0.

(The unit element of R will be identified with 1.) The question of determining all
the canonical number systems in the ring of Gaussian integers was raised by I. KATAI
and J. SzaB6 and has been completely solved by them in [1]. The same question has
been answered in [2], [3], [4] for the rings of integers of quadratic number fields.
In [5], a necessary and sufficient condition has been given for the existence of a
canonical number system in the ring of integers of an arbitrary algebraic number field.
The aim of this paper is to provide a complete description of integral domains
having a canonical number system. Using some ideas of [5], we shall first give a
complete characterization of integral domains R of characteristic 0 which have a
canonical number system. Namely, we shall prove the following theorem:

Theorem 1. Let R be an integral domain of characteristic 0. In R there exists a
canonical number system if and only if

R==Zl[o]
for some element o which is algebraic over QY).
For integral domains of characteristic p (p prime) we have the following

Theorem 2. Let R be an integral domain of characteristic p=0. In R there
exists a canonical number system if and only if

R = Z/p-D)[x].
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1) Z and Q denote the ring of rational integers and the field of rational numbers, respectively.
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Remark. Let R be a ring with unit element. Then the notion of canonical
number system can be defined in a similar way. If R has a canonical number system,
then R is commutative because it is generated by one element. One can show in
the same way as in case of Theorem 1 that if the additive order of the unit element
of R is infinite then the assertion of Theorem 1 remains valid for R

2. Proofs

Proor oF THEOREM 1.

1. First suppose that R has a canonical number system {x, #;} where a€R
and A;={0,1,...,m} for some positive integer m. Then obviously R=Z[x«].
Further we can write m+1 in the form

m+1 = ay+a,a+...+aad where ageAN;,, 0=i=1t

This implies that « is a root of a polynomial with integral coefficients, i.e. « is an
algebraic element over Q.

2. Now assume that R=Z[x] for some a which is algebraic over Q. We shall
show that there exists a canonical number systemin Z[x]. Let P(x)=a,x"+...+
+a, x+a, be an irreducible polynomial with integral coefficients such that P(x)=0
and a,>0.

Since a,=0, it is easy to see that there exists an integer N,=0 such that, for
every integer N = N,, the coefficients of the polynomial P(x+ N)=b,x"+...+b,x+b,
satisfy

O<b,=b,.,=...=b,=b, and b, =2

Let f=a—N where N=N, is a fixed integer. Then f§ is a root of the irreducible
polynomial P(x+N) and Z[x]=Z[f]. Let us choose N such that N=N; and
is not a root of unity. We shall show that {, .45} is a canonical number system in
Z[a] where A;={0, 1, ..., by—1}.

Since Z[a]=Z[f], for every ycZ[a] there exists a representation of the form

2.1) Y = Ug+ Uy Bt ..+t B

where u,, u,, ..., u,, are suitable rational integers. Since y=y+d- (by+b,f+... +b, ")
with b;=1, d€Z, y can be represented as

(2.2) Y =0+ f+... 40, "

where the v;’s are non-negative integers, and m=n.

Consider a representation of y with property (2.2). Let T'(p, v)=vo+v; + ... +0p
and I(y)=m+1 (v,,#0). It is obvious that T'(y,v) is a positive integer if y=0.
By b,=2 we have

vg=ro+1-by with 1=0, (€Z, reA.
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Then
Yy =y+1(B—1)(bo+bf+...+b,") =

=ro(y—1-by+1-bp)p+... +Wpo1— 1+ byoy +1- by ) B+ (W — 1 - by + 1+ by ) B+
+(Wps1+1- D) 0,10 2. 0, B = vg +0f B+... +0vf B¢ for some k,
and in view of b;=b;.,, we have »{=0 for i=0, ..., k. Furthermore, we have
T(y,v*) = (vo—1t-by)+(vy—1-by+t-by)+...+(w,—t-b,+1-b,_1)+@,41+1-b,)+
4+, 49+ ... 40, =T (3, 0).

Let yy=vf+o3f+...+of B*~" (1, #0). Then y=ro+p-y; and T(y,, v)=T(y, v)—
—ro,=0, because vg=rycAN;.

By repeating this argument we obtain the sequence y=r,+f-71;, m=n+
+B-7g, ... where rieH, and T(y,0)=T(y,,v)=... and T(y;, v)=T(;41,?) Only
if r,=0. Since the sequence T(y,,?) is a monotonically decreasing sequence of
non-negative integers, for a suitable integer M we have T(y, v)=T(yy+1,?) for
k=M. Consequently, for k=M r,=0 and %= ;1.

It is easy to see that for k=m either y,=0 or /(y)=n+1. Let us assume
that y,#0 for all k with k=m, k=M, We have T(y;, v)=T (g4, ?) for k=M
and /(y,)=n+1, hence 7, Yx+1,..- are all different from zero and the number of
different elements of the sequence ¥, Yx:1, ... 1s finite. Hence there exist indices r,
s such that y,=y,,,. But y,=p*-7,,,, hence

(23) Vr =B,

From (2.3) we see that f is a root of unity which contradicts the assumption made
before. This shows that there exists an index k so that y,=0. But this means that
y has a representation of form (1.1).

It remains to prove that the representation of form (1.1) is unique. Suppose
on the contrary that for some y there exist two representations

(2.9) ro+np+..+np=sots f+...+sp, reM.
s;€Ap. We may assume that k=t and r,=s,. Then
(2.5_) 0 = (ro"‘So)“l"(rj —sl)ﬁ-l-...'{-(rk—s,‘)ﬂk.

Hence 0=r,—s,<b,. But P(x+N) is an irreducible polynomial and p is a root
of P(x+N). Thus the polynomial P(x+N) divides (ry—sy)+(r,—s)x+...
<. +(r—5,) X* in the polynomial ring Q[x]. Using Gauss’ lemma and the fact that
0=r,—so<b, we get that r,—s,=0. After dividing (2.5) by p we obtain

0 = (r;—5)+(r2—s) B+ ... +(ry—5,) B 1

and we can deduce in the same way as above that r,=s,. Repeating this argument
we obtain
To = 80> F1L =351y 00a T = 5

which contradicts our assumption. This proves that the representation (1.1) is unique
for every y€Z[a].



156 B. Kovacs: Integral domains with canonical number systems

PRrOOF OF THEOREM 2.

a) Suppose that in R there is a canonical number system {x, A;} where a€R
and A;={0,1, ..., m} for some m=1. First assume that « is an algebraic element
over the field Z/p-Z. Then the field (Z/p-Z)() is finite. But we can take infinitely
many sums of the form (1.1) and these elements are all contained in R. Since every
y€R can be written in the form (1.1), y€(Z/p-Z)(x) and so R is finite. Therefore
there exists at least one y€R which has at least two different representations in
the form (1.1). But this is impossible because {x, 45} is a canonical number sys-
tem in R.

Now assume that « is a transcendental element over Z/p-Z. Then m=p—1.
If m<p—1 then

p—=1=ay+aa+...+aa where ag€AH, for i=0,..,r.

This would imply that « is an algebraic element over Z/p-Z. Consequently, m=
p—1 and R=(Z/p-Z)[x].

b) Suppose now that R=(Z/p-Z)[x]. Putting a=x and A;={0,1,...,p—1},
it is evident that {«, 47} is a canonical number system in (Z/p-Z)[x] and so the
proof of our Theorem 2 is complete.
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