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Recently in [3] Ta. FAwzy and F. HoLAIL have presented a (0, 2)-type lacunary
interpolation method by splines of degree 6. Here we show that the same method
can be applied for approximation in L”, if the function values and the second de-
rivatives are replaced by integral mean values and second order difference quotients,
respectively. Here we present our results in L?(R), but we remark, that similar
results can be proved in the case of L?(a, b), where (a, b) is any finite open interval.
Our main ideas are similar to those of [4].

For any integer r=0 the space W}, with 1=p<<o consists of all r-times dif-
ferentiable functions with an r-th derivative belonging to L?. The LP-modulus of
continuity ,(f,h), for any fin L” is defined as usually (h=0) (see e.g. [1], [2]).

The following theorem — which is a slight modification of a result in [1] —
has been proved in [4].

Lemma. Let I' be an arbitrary set and L,: L?—~L? (1=p<ee) for any y in T,
uniformly bounded linear operators, for which there exist a function a: I'-+[0,1], an
integer r=1 and a constant ¢=0 with the property that

1L, () =f1l, = ca@I S,

whenever f is in W},. Then there exists a constant d=0 with

ILy()—=f1, = do,(f, a@)'"),

whenever fis in LP.
Let fcL? be arbitrary and we define

x+hf2

fw=5 [ fo.

x—h/2

The function fj, is called the Steklov-transform of f. Let h=0 and {x;} be a sub-
division of R with x;.;—x;=h. Let for all k

R=hd, f =552,
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and
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1 A h"
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Then this S}, is a continuous function with a right continuous second derivative,
and it is a piecewise polynomial of degree 6 (see [3]).

Theorem. For any fin L? (1=p<-<) we have

o ISy—/f 1, = const wy(f, h),
or U=h=1.

Proor. 1t is trivial that the operator f—S, is linear. In order to apply the
lemma we first prove the uniform boundedness.
In what follows we shall often use the inequality

|fflp = mEYP [IfIP,  (feLP(E), 1 = p <<).
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As S is a linear combination of terms of the type W fi» we first estimate the
quantity
] Pql/p
Al |-
x,+h/2

1/p
[Z—h'- i If(x)l’dx] = h-=e| 1],

x.—h/2

We have

154, = >[> ] [ -y
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f(x) dx
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and, by the above estimation, we get
]Ish"p = const "f"p

which proves the uniform boundedness.
Now let feW;. By the Taylor-formula we have

fX) = fe)+/ ) x—x)+ [ (x—&) (&) d¢

where x,<&<x and hence for all x;=x=x,,,

(1 S0 ~10) = U+ (- 470 =0 -
-ax 3 - ][ fe-or@a]+
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It is enough to prove that all terms in the square brackets have LP-norms which are
not greater than const i?| /| .
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and hence
1 o DR, S
[z 2] = 1.

On the other hand, it is easy to see, that S{” (r=3) is a linear combination of terms
of the type
1 1
el AL
which implies that for r=3

1 "
[%’ ISF)P]I“’ = const _E:W "f “p.

From this fact we infer that for j=3

e

which is thc desired estimation for the L?-norm of the last four terms in (1).
For the first term we have

Up | [ ppit+1 B
dx] L leuqn] = const h2[ £,

1
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—hj2 x5
xk+h}2 x pllp
[hz S -0 dé dx] =
X —H! Xy
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For the second term we obtain
x 1/p
[z 1B s c-nra] =
E 5

p]m

P+l x,‘+h!8 g s
=[5 2[ L UG D—0- )ds



Lacunary spline interpolation in L? 165

On the other hand, by the Taylor-formula we get

x+h

fOe+h) = fx)+f xx+h—x)+ [ (x+h=8f"(E)dE,

) = f)+HF =3+ [ (x—8) () dé

and hence
x+h x+h

fe+N—f)—~f )b = [ x=Of " ©de+h [ fr(©) e

that is, continuing the above estimation

[:m 2w :::ﬂ fb(x—f)f O dEdrto; x:z;h jkf @ dedr| ]"'
2;}::1 : {h;;lxx7us|f = & f"(©) e’ dx+
= ;: |f rodpal]” =
2 [2;:’11 Z{hfil f; :2 e x:z:m Lf"(E)IP dE dx+
+}l xﬁm(sh Sk If”(é)l’dedx}]up_s_consth2||f'||,,

x, —h/2 x,—hj2

where we applied the inequality |a+b|?=27(|a|?+|b|?). The estimation for the
sixth term in (1) is as follows:

(2 [ fe-or@ara=[3 [ [ c-olroia)lals

=h[3 T[T 1@l ae=n(nz w- T 1w e = i,

and for the fifth term of (1):
ryllp
| =

hz p+1

(3 J e xo"l’dxl‘“'—[zpﬂz

hE+1/p

= @p+1)7® hl“’ Lf"ll, = const k|| £ ,.

e 41

Similarly
1&: gy (x—x)|P dx]"? = const 12| f”],.
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Finally, the estimation for the fourth term in (1) is very similar to that of the last

terms, and we have
|Sy—flx = const k*| 7] ,.

Now applying the lemma we get the statement.
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