On a functional equation of sum form

By L. LOSONCZI (Debrecen)

Dedicated to Professor Zoltán Daróczy on his 50th birthday

1. Introduction

Functional equations of sum form appear in characterizations of entropies having the sum property (see e.g. Aczél—Daróczy [1] p. 110, Losonczi [3]). Examples are the equations

(1)
$$\sum_{i=1}^{k} \sum_{j=1}^{l} f(x_i y_j) = \sum_{i=1}^{k} f(x_i) + \sum_{j=1}^{l} f(y_j)$$

and

(2)
$$\sum_{i=1}^{k} \sum_{j=1}^{l} f(x_i y_j) = \sum_{i=1}^{k} f(x_i) \sum_{j=1}^{l} f(y_j).$$

Here $k, l \ge 2$ are fixed integers, $(x_1, ..., x_k) \in \Gamma_k, (y_1, ..., y_l) \Gamma_l$ with

$$\Gamma_n = \{(x_1, ..., x_n) | x_i \ge 0, \sum_{i=1}^n x_i = 1\} \quad (n = 2, 3, ...)$$

and $f: [0, 1] \rightarrow \mathbb{C}$ is an unknown function.

Equations (1) and (2) have been solved under various assumptions on f. If $k, l \ge 3$ and f is measurable then applying a general result of Losonczi ([4] Theorem 4) (1) and (2) can be reduced to the equations

$$f_1(xy) = yf_2(x) + xf_3(y)$$
 $x, y \in [0, 1]$

and

$$f_1(xy) = f_2(x)f_3(y)$$
 $x, y \in [0, 1]$

respectively, where

$$f_1(x) = f(x) - f(0) + xklf(0),$$

$$f_2(x) = f_1(x) - xk(l-1)f(0), \quad f_3(x) = f_1(x) - x(k-1)lf(0).$$

Thus, solving (1), (2) and similar equations is simple if f is measurable and k, $l \ge 3$. Difficulties arise however if k=3, l=2 (k=2, l=3), k=l=2 or if f is not measurable.

The measurable solutions and the solutions bounded on a set of positive measure of (1) are known if k, $l \ge 2$ and $k \ge 3$, $l \ge 2$ respectively (Daróczy—Járai [2],

MAKSA [7]). The general solution is however not known even if $k, l \ge 3$. The only result in this direction is a representation of the solution of (1) by help of certain additive functions (LOSONCZI—MAKSA [6]).

In case of equation (2) the situation is completely different. The general solution of (2) is known if $k \ge 3$, $l \ge 3$ (Losonczi—Maksa [5]) or $k \ge 3$, $l \ge 2$ and $f(x)+f(1-x)\ne 1$ (Maksa [8]). Nothing has been known on the solutions if k=l=2.

The aim of this paper is to study equation (2) with k=l=2, that is the equation

(3)
$$f(xy)+f(x(1-y))+f((1-x)y)+f((1-x)(1-y)) =$$
$$=[f(x)+f(1-x)][f(y)+f(1-y)] \quad x, y \in [0, 1].$$

We shall find all solutions of (3) in the class $C_3[0, 1]$, the space of all three times continuously differentiable complex valued functions on [0, 1].

The behaviour of equation (3) is quite surprising.

First, the methods which have been used to find the general solution of (2) if $k \ge 3$, $l \ge 2$ completely fail.

Second, new solutions arise. Some polynomials of degree 5 are solutions of (3) but (2) with $k \ge 3$, $l \ge 2$ has no polynomial solution of degree 5 (different from x^5).

2. Solution of the equation (3)

Our main result is the following

Theorem. If $f: [0, 1] \rightarrow \mathbb{C}$, $f \in C_3[0, 1]$ is a solution of (3) then

(4)
$$f(x) = x^{p} \quad x \in [0, 1]$$
or
(5)
$$f(x) = qx + 1/2[1 - q \pm (1 - q)^{1/2}] \quad x \in [0, 1]$$
or
(6)
$$f(x) = rx^{3} + 1/2[1 - 3r \pm (1 + 3r)^{1/2}]x^{2} + 1/2[1 + r \mp (1 + 3r)^{1/2}]x \quad x \in [0, 1]$$
or
(7)
$$f(x) =$$

$$= sx^{5} + 1/2[1 - 5s \pm (1 + 15s)^{1/2}]x^{4} + 1/54[1 + 3s \mp [1 + 15s)^{1/2}](40x^{3} - 15x^{2} + 2x)$$

$$x \in [0, 1]$$

where Re $p \ge 3$, p, q, r, s are complex constants. Conversely, the functions (4), (5), (6), (7) are $C_3[0, 1]$ solutions of (3) if p, q, r, $s \in \mathbb{C}$ are arbitrary constants with Re $p \ge 3$.

PROOF. Suppose that $f \in C_3[0, 1]$ satisfies (3). We shall deduce a differential equation for f, solve it and select the solutions of (3) out of the solutions of our differential equation. Let

(8)
$$h(x) = f(x) + f(1-x)$$

then

(9)
$$f(xy)+f(x(1-y))+f((1-x)y)+f((1-x)(1-y))=h(x)h(y).$$

Differentiating with respect to y ones, twice, three times we obtain

(10)
$$xf'(xy) - xf'(x(1-y)) + (1-x)f'((1-x)y) - (1-x)f'((1-x)(1-y)) = h(x)h'(y)$$

(11)
$$x^2 f''(xy) + x^2 f''(x(1-y)) + (1-x)^2 f''((1-x)y) + (1-x)^2 f''((1-x)(1-y)) = h(x)h''(y)$$

(12)
$$x^3 f'''(xy) - x^3 f'''(x(1-y)) + (1-x)^3 f'''((1-x)y) - (1-x)^3 f'''((1-x)(1-y)) = h(x)h'''(y).$$

Substituting y=1 in (9), (10), (11), (12) we get

$$(13) x^n f^{(n)}(x) + (1-x)^n f^{(n)}(1-x) + (-1)^n [x^n + (1-x)^n] f^{(n)}(0) = h(x) h^{(n)}(1)$$

for n=0, 1, 2, 3; $x \in [0, 1]$.

Differentiation of (13) and multiplication by 1-x yields

(14)
$$n(1-x)^{n-1}f^{(n)}(x) + (1-x)x^nf^{(n+1)}(x) - n(1-x)^nf^{(n)}(1-x) - (1-x)^{n+1}f^{(n+1)}(1-x) + n(-1)^n[x^{n-1} - (1-x)^{n-1}]f^{(n)}(0) = (1-x)h'(x)h^{(n)}(1).$$

Adding equation (13) with n replaced by n+1 and equation (13) multiplied by n to equation (14) all derivatives at the point 1-x disappear and we have

(15)
$$nx^{n-1}f^{(n)}(x) + x^n f^{(n+1)}(x) + n(-1)^n x^{n-1}f^{(n)}(0) +$$

$$+(-1)^{n+1}[x^{n+1}+(1-x)^{n+1}]f^{(n+1)}(0)=[nh^{(n)}(1)+h^{(n+1)}(1)]h(x)+h^{(n)}(1)(1-x)h'(x).$$

For n=0, 1, 2 (15) gives the following system of equations:

(16)
$$f'(x) - f'(0) = h'(1)h(x) + h(1)(1-x)h'(x)$$

$$(17) f'(x) + xf''(x) - f'(0) + [x^2 + (1-x)^2]f''(0) = [h'(1) + h''(1)]h(x) + h'(1)(1-x)h'(x)$$

(18)
$$2xf''(x) + x^2f'''(x) + 2xf''(0) - [x^3 + (1-x)^3]f'''(0) =$$
$$= [2h''(1) + h'''(1)]h(x) + h''(1)(1-x)h'(x).$$

Denote by $L_1(x)$, $L_2(x)$, $L_3(x)$ the left hand side of (16), (17), (18) respectively. At any fixed $x \in [0, 1]$ (16), (17), (18) may be considered as a linear homogeneous system of algebraic equations for the unknowns -1, h(x), (1-x)h'(x). Since this system has nontrivial solution its determinant must be zero:

(19)
$$\begin{vmatrix} L_1(x) & h'(1) & h(1) \\ L_2(x) & h'(1) + h''(1) & h'(1) \\ L_3(x) & 2h''(1) + h'''(1) & h''(1) \end{vmatrix} = 0.$$

Expanding this determinant by the elements of the first column we get

(20)
$$A_1L_1(x) + A_2L_2(x) + A_3L_3(x) = 0$$

where A_i are the cofactors of L_i (i=1, 2, 3) in (19).

To evaluate A_3 we substitute x=0 in (17) We obtain that

$$f''(0) = [h'(1) + h''(1)]h(0) + h'(1)h'(0).$$

Since h(0)=h(1), h'(0)=-h'(1) we have

(21)
$$A_3 = h'(1)^2 - [h'(1) + h''(1)]h(1) = -f''(0).$$

Similarly, from (18) with x=0

(22)
$$A_2 = h(1)[2h''(1) + h'''(1)] - h'(1)h''(1) = -f'''(0).$$

To find A_1 we differentiate (17) with respect to x. The resulting equation is

$$2f''(x) + xf'''(x) + f''(0)(4x - 2) = [h'(1) + h''(1)]h'(x) + h'(1)[(1 - x)h''(x) - h'(x)].$$

Here the function $x \rightarrow xf'''(x)$ must be differentiable on [0, 1] since all other terms in the equation are differentiable. Thus we may differentiate again and obtain

$$2f'''(x) + (xf'''(x))' + 4f''(0) = [h'(1) + h''(1)]h''(x) + h'(1)[(1-x)h'''(x) - 2h''(x)].$$

Using the relation

$$(xf'''(x))'_{x=0} = \lim_{h \to 0} hf'''(h)/h = f'''(0)$$

we get with x=0

$$3f'''(0) + 4f''(0) = [h'(1) + h''(1)]h''(0) + h'(1)[h'''(0) - 2h''(0)].$$

By h''(0)=h''(1), h'''(0)=-h'''(1) the right hand side of this equation is exactly A_1 hence

(23)
$$A_1 = 3f'''(0) + 4f''(0).$$

The form of our differential equation (20) thus depends on the values f''(0), f'''(0). We shall distinguish several cases.

Case 1. $h(1)=f(1)+f(0)\neq 1$. Then from (13) with n=0

(24)
$$h(x)[h(1)-1] = 2f(0)$$

therefore h(x) = constant. By (16) f'(x) - f'(0) = 0 i.e. f is a linear function. Substitution shows that this is a solution of (3) if and only if f is of the form (5).

Case 2.
$$h(1)=f(1)+f(0)=1$$
. Then by (24) $f(0)=0$ therefore $f(1)=1$.

Subcase 2.1.
$$h(1)=1$$
, $h'(1)=0$, $f''(0)=0$. By (21) $h''(1)=0$ and from (17)

$$f'(x) + xf''(x) = f'(0).$$

The general solution of this Euler's differential equation is

$$f(x) = c_1 + c_2 \ln x + f'(0)x \quad x \in [0, 1]$$

with arbitrary constants c_1 , c_2 . Since f(0)=0, $f\in C_3[0,1]$ the constants c_1 , c_2 must be zero. f(x)=f'(0)x is a solution of (3) if and only if f'(0)=0 or f'(0)=1. These solutions are included in (5).

Subcase 2.2.
$$h(1)=1$$
, $h'(1)\neq 0$, $f''(0)=0$. From (21)

$$(h'(1)+h''(1))/h'(1) = h'(1)/h(1) = p \neq 0.$$

Multiplying (16) by -p and adding it to (17) we get

$$(25) (1-p)f'(x)+xf''(x)=(1-p)f'(0).$$

The general solution of (25) is

$$f(x) = c_1 + c_2 x^p + f'(0)x$$

with arbitrary constants c_1 , c_2 . $f \in C_3[0, 1]$ implies that either $c_2 = 0$ or $p \in \{1, 2\} \cup \{s \in \mathbb{C} | \text{Re } s \ge 3\}$. By f(0) = 0, f(1) = 1 we have $c_1 = 0$, $c_2 = 1 - f'(0)$, i.e.

(26)
$$f(x) = [1 - f'(0)]x^p + f'(0)x.$$

If p=1 then f(x)=x which is a solution of form (5). If $p\neq 1$ then the substitution of (26) in (3) yields that

$$[1-f'(0)]f'(0)[x^p+(1-x)^p-1][y^p+(1-y)^p-1]=0.$$

Hence (26) is a solution of (3) if and only if either 1-f'(0)=0 or f'(0)=0. In the first case f is of the form (5), in the second f is of the form (4) if $p \ne 2$ while f is of the form (6) (with r=0) if p=2.

Subcase 2.3. $h(1)=1, f''(0)\neq 0$. By (21), (22), (23) we get from (20) that

$$L_3(x) + uL_2(x) - (3u+4)L_1(x) = 0$$

where u=f'''(0)/f''(0). Using the definition of L_i this can be written as

$$x^{2}f'''(x) + (u+2)xf''(x) - 2(u+2)f'(x) + 2(u+2)f'(0) + 2f''(0)x + f'''(0)(x-x^{2}) = 0.$$

Integrating from 0 to x and applying the formulas

$$\int_{0}^{x} tf''(t) dt = xf'(x) - f(x) + f(0),$$

$$\int_{0}^{x} t^{2}f'''(t) dt = x^{2}f''(x) - 2xf'(x) + 2f(x) - 2f(0)$$

and the condition f(0)=0 we obtain

(27)
$$x^2 f''(x) + uxf'(x) - (3u+4)f(x) = \frac{x^3}{3}f'''(0) - \frac{x^2}{2}(u+2)f''(0) - 2x(u+2)f'(0).$$

Subcase 2.3.1. h(1)=1, $f''(0)\neq 0$, u=f'''(0)/f''(0)=-2. We show that this case cannot occur. The general solution of (27) is

$$f(x) = c_1 x + c_2 x^2 + \frac{f'''(0)}{6} x^3 = c_1 x + c_2 x^2 + c_3 x^3$$

with arbitrary constants c_1 , c_2 . The conditions f(1)=1, $f''(0)\neq 0$, u=-2 give that $c_1+c_2+c_3=1$, $c_2\neq 0$, $6c_3/2c_2=-2$ that is

(28)
$$f(x) = c_3 x^3 - \frac{3}{2} c_3 x^2 + (1 + c_3/2) x.$$

Substituting (28) in (3) we obtain, after a simple calculation, that

$$6c_3(x^2-x)(y^2-y)=0.$$

Hence $c_3=0$ and $c_2=-\frac{3}{2}c_3=0$ which is a contradiction.

Subcase 2.3.2. $h(1)=1, f''(0)\neq 0, u=f'''(0)/f''(0)\neq -2$. In this case

$$g(x) = \frac{f'''(0)}{6}x^3 + \frac{f''(0)}{2}x^2 + f'(0)x$$

is a particular solution of (27). The homogeneous equation corresponding to (27) is an Euler's equation with characteristic equation

(29)
$$s^2 + (u-1)s - (3u+4) = 0.$$

We have to distinguish 2 cases again.

Subcase 2.3.2.1. h(1)=1, $f''(0)\neq 0$, $u\neq -2$, $u^2+10u+17=0$. Now $u=-5\pm 1/\sqrt{8}$ and the corresponding root of (29) $s_1=\frac{u-1}{2}=-3\pm 1/\sqrt{2}$ has multiplicity 2. The general solution of (27) is

$$f(x) = c_1 x^{s_1} + c_2 x^{s_1} \ln x + g(x)$$
 $x \in (0, 1].$

Since f(0)=0 and $f \in C_3[0,1]$ c_1, c_2 must be zero. Thus

(30)
$$f(x) = g(x) = \frac{f'''(0)}{6} x^3 + \frac{f''(0)}{2} x^2 + f'(0) x = d_1 x^3 + d_2 x^2 + d_3 x$$

and by f(1)=1 $d_1+d_2+d_3=1$. Substituting (30) in (3) and using the condition $d_1+d_2+d_3=1$ we obtain

$$[(3d_1+2d_2)^2-(9d_1+4d_2)](x^2-x)(y^2-y)=0$$

hence (30) is a solution of (3) if and only if

$$(3d_1+2d_2)^2 = 9d_1+4d_2$$
, $d_3 = 1-d_1-d_2$

hold. Therefore, with $d_1 = r$

$$d_2 = \frac{1}{2} [1 - 3r \pm (1 + 3r)^{1/2}], \quad d_3 = \frac{1}{2} [1 + r \mp (1 + 3r)^{1/2}].$$

We obtained solution (6) (with $d_2 \neq 0$, $3d_1/d_2 = -5 \pm \sqrt{8}$).

Subcase 2.3.2.2. h(1)=1, $f''(0)\neq 0$, $u\neq -2$, $u^2+10u+17\neq 0$. In this case (29) has two distinct roots s_1 , s_2 . We may suppose that $\text{Re } s_1 \geq \text{Re } s_2$. Due to the condition $u\neq -2$ we have $\{s_1, s_2\} \cap \{1, 2, 3\} = \emptyset$ therefore the general solution of (27) is

(31)
$$f(x) = c_1 x^{s_1} + c_2 x^{s_2} + g(x) \quad x \in (0, 1]$$

with arbitrary constants c_1 , c_2 .

It would be a very long calculation to substitute (31) in (3). Therefore first we try to satisfy (12). Substituting (31) in (12) we obtain after some rearrangements that

(32)
$$e_1k_1(x)l_1(y) + e_2k_2(x)l_2(y) = h(x)h'''(y) \quad x, y \in (0, 1)$$

where

(33)
$$l_i(y) = y^{s_i-3} - (1-y)^{s_i-3} \quad y \in (0, 1)$$

(34)
$$k_i(y) = x^{s_i} + (1-x)^{s_i} \qquad x \in (0,1)$$

(35)
$$e_i = c_i s_i (s_i - 1)(s_i - 2) \quad (i = 1, 2).$$

Subcase 2.3.2.2.1. h(1)=1, $f''(0)\neq 0$, $u\neq -2$, $u^2+10u+17\neq 0$, h'''(y)=0 if $y\in (0,1)$. Now h is a polynomial of degree ≤ 2 and from (16) f is a polynomial of degree ≤ 3 with f(0)=0, f(1)=1. Thus, as in the Subcase 2.3.2.1, f must be of the form (6) (with $d_2\neq 0$, $3d_1/d_2\neq -5\pm\sqrt{8}$).

Subcase 2.3.2.2.2. h(1)=1, $f''(0)\neq 0$, $u\neq -2$, $u^2+10u+17\neq 0$, $h'''(y_0)\neq 0$ for some $y_0\in (0,1)$, $\left(y_0\neq \frac{1}{2}\right)$. From (32) we obtain that

(36)
$$h(x) = B_1 k_1(x) + B_2 k_2(x)$$

with suitable constants B_1 , B_2 . With (36) we get from (32) that

(37)
$$k_1(x)[e_1l_1(y)-B_1h'''(y)]+k_2(x)[e_2l_2(y)-B_2h'''(y)]=0$$
, $x, y \in (0, 1)$.

At this point we have to know if k_1 , k_2 (and l_1 , l_2) are linearly independent or not. First we deal with this question.

Lemma 1. Let $s_1, s_2 \in \mathbb{C}$, $s_1 \neq s_2$. The functions k_1, k_2 defined by (34) are linearly dependent on (0, 1) if and only if $s_1 = 0$, $s_2 = 1$ or $s_1 = 1$, $s_2 = 0$.

PROOF OF LEMMA 1. $x^0 + (1-x)^0 = 2 = 2[x + (1-x)]$ thus k_1 , k_2 are linearly dependent for $s_1 = 0$, $s_2 = 1$ and $s_1 = 1$, $s_2 = 0$.

We show that apart from these cases k_1 , k_2 are linearly independent. Suppose that

(38)
$$\lambda_1 k_1(x) + \lambda_2 k_2(x) = 0 \quad x \in (0, 1)$$

holds with constants λ_1 , λ_2 . Then

$$\lambda_1 k_1 \left(\frac{1}{2}\right) + \lambda_2 k_2 \left(\frac{1}{2}\right) = 0$$

$$\lambda_1 k_1'' \left(\frac{1}{2}\right) + \lambda_2 k_2'' \left(\frac{1}{2}\right) = 0$$

(41)
$$\lambda_1 k_1^{\text{IV}} \left(\frac{1}{2} \right) + \lambda_2 k_2^{\text{IV}} \left(\frac{1}{2} \right) = 0$$

are valid too. If $s_1 + s_2 \neq 1$ then

$$\begin{vmatrix} k_1 \left(\frac{1}{2}\right) & k_2 \left(\frac{1}{2}\right) \\ k_1'' \left(\frac{1}{2}\right) & k_2'' \left(\frac{1}{2}\right) \end{vmatrix} = 2^{4-s_1-s_2} (s_2-s_1)(s_1+s_2-1) \neq 0$$

thus by (39), (40) $\lambda_1 = \lambda_2 = 0$, k_1 , k_2 are linearly independent. If $s_1 + s_2 = 1$ but $(|s_1| + |s_2|) (|s_1 - 1| + |s_2|) \neq 0$ then

$$\begin{vmatrix} k_1'' \left(\frac{1}{2}\right) & k_2'' \left(\frac{1}{2}\right) \\ k_1^{\text{IV}} \left(\frac{1}{2}\right) & k_2^{\text{IV}} \left(\frac{1}{2}\right) \end{vmatrix} = 2^{8-s_1-s_2} s_1 s_2 (s_1-1)(s_2-1)(s_1-s_2)(s_1+s_2-5) \neq 0$$

therefore by (40), (41) $\lambda_1 = \lambda_2 = 0$ and k_1 , k_2 are linearly independent.

Lemma 2. Let $s_1, s_2 \in \mathbb{C}$, $s_1 \neq s_2$. The functions l_1, l_2 defined by (33) are linearly dependent on (0, 1) if and only if $s_1=3$ ($s_2\neq 3$) or $s_2=3$ ($s_1\neq 3$) or $s_1=5$, $s_2=4$ or $s_1=4$, $s_2=5$.

PROOF OF LEMMA 2. It is easy to see that l_1 , l_2 are linearly dependent if s_1 , s_2 have the values listed in Lemma 2. We show that apart from these cases l_1 , l_2 are linearly independent. This follows from the fact that one of the determinants

$$\begin{vmatrix} l_1'\left(\frac{1}{2}\right) & l_2'\left(\frac{1}{2}\right) \\ l_1'''\left(\frac{1}{2}\right) & l_2'''\left(\frac{1}{2}\right) \end{vmatrix} = 2^{12-s_1-s_2}(s_1-3)(s_2-3)(s_2-s_1)(s_1+s_2-9)$$

and

$$\begin{vmatrix} l_1'''\left(\frac{1}{2}\right) & l_2'''\left(\frac{1}{2}\right) \\ l_1^{\mathrm{V}}\left(\frac{1}{2}\right) & l_2^{\mathrm{V}}\left(\frac{1}{2}\right) \end{vmatrix} =$$

$$=2^{14-s_1-s_2}(s_1-3)(s_2-3)(s_1-4)(s_2-4)(s_1-5)(s_2-5)(s_2-s_1)(s_1+s_2-13)$$

is nonzero if s_1 , s_2 are not among the pairs listed in Lemma 2.

Now we return to the proof of our theorem. We remark that the assumptions on s_1 , s_2 in the Subcase 2.3.2.2 and in Lemmas 1, 2 are slightly different. In Subcase 2.3.2.2 Re $s_1 \ge \text{Re } s_2$, $s_1 \ne s_2$ and $\{s_1, s_2\} \cap \{1, 2, 3\} = \emptyset$ are supposed while in Lemmas 1, 2 only $s_1 \ne s_2$ is a priori assumed.

By $\{s_1, s_2\} \cap \{1, 2, 3\} = \emptyset$ and by Lemma 1 k_1, k_2 are linearly independent thus

by (37)

(42)
$$e_1 l_1(y) = B_1 h'''(y) \quad y \in (0, 1)$$

(43)
$$e_2 l_2(y) = B_2 h'''(y) \quad y \in (0, 1).$$

If $e_1=e_2=0$ then $c_1=c_2=0$, f(x)=g(x) which is a solution of (3) if and only if f is of the form (6).

If $e_1e_2=0$ but one of e_1 , e_2 , say e_1 , is nonzero then $e_2=0$, $e_2=0$ and

(44)
$$f(x) = c_1 x^{s_1} + g(x).$$

Substituting this function in (3) we get

(45)
$$c_1 k_1(x) k_1(y) + g(xy) + g(x(1-y)) + g((1-x)y) + g((1-x)(1-y)) =$$

$$= [c_1 k_1(x) + g(x) + g(1-x)][c_1 k_1(y) + g(y) + g(1-y)].$$

Differentiating (45) three times with respect to y we obtain

$$c_1k_1(x)k_1'''(y) = [c_1k_1(x)+g(x)+g(1-x)]c_1k_1'''(y)$$

therefore, by

$$c_1 k_1'''(y) = c_1 s_1 (s_1 - 1)(s_1 - 2) [y^{s_1 - 3} - (1 - y)^{s_1 - 3}] \neq 0$$
 if $y \neq \frac{1}{2}$

we get

$$k_1(x) = c_1 k_1(x) + g(x) + g(1-x).$$

Differentiation three times shows that $c_1=1$ and g(x)+g(1-x)=0. Hence from (45)

$$g(xy)+g(x(1-y))+g((1-x)y)+g((1-x)(1-y))=0$$

which implies that

$$g(x) = 0 = \frac{f'''(0)}{6}x^3 + \frac{f''(0)}{2}x^2 + f'(0)x$$
, i.e. $f''(0) = 0$

which is a contradiction. Thus this case cannot occur.

If $e_1e_2\neq 0$ then $B_1B_2\neq 0$ since e_1l_1 , e_2l_2 are nonzero functions. From (42), (43)

$$B_{2}e_{1}l_{1}(y)-B_{1}e_{2}l_{2}(y)=0$$
 $y\in(0,1),$

i.e. l_1 , l_2 are linearly dependent on (0, 1). By Lemma 2 and our condition $\text{Re } s_1 \ge \text{Re } s_2$ this holds if and only if $s_1 = 5$, $s_2 = 4$. From (31) with

$$c_3 = \frac{f'''(0)}{6}, \quad c_4 = \frac{f''(0)}{2}, \quad c_5 = f'(0)$$

(46)
$$f(x) = c_1 x^5 + c_2 x^4 + c_3 x^3 + c_4 x^2 + c_5 x$$

and by
$$f(1)=1$$
 (47)
$$c_5 = 1 - (c_1 + c_2 + c_3 + c_4).$$

Substituting (46) in (3) we obtain after some simple calculations an equation of the form

(48)
$$\sum_{k=0}^{3} \sum_{l=0}^{3} a_{kl} p_k(x) p_l(y) = 0$$

where $p_k(x) = x^k$ (k = 0, 1, 2) and $p_3(x) = x^4 - 2x^3$. Since p_0, p_1, p_2, p_3 are linearly independent (48) holds if and only if $a_{kl} = 0$ (k, l = 0, 1, 2, 3). A simple but long calculation gives that

$$\begin{aligned} a_{33} &= 25c_1 + 4c_2 - (5c_1 + 2c_2)^2 \\ a_{32} &= a_{23} = 50c_1 + 12c_2 - (5c_1 + 2c_2)(10c_1 + 6c_2 + 3c_3 + 2c_4) \\ a_{31} &= a_{13} = -25c_1 - 8c_2 - (5c_1 + 2c_2)(-5c_1 - 4c_2 - 3c_3 - 2c_4) \\ a_{30} &= a_{03} = 0 \\ a_{22} &= 100c_1 + 36c_2 + 9c_3 + 4c_4 - (10c_1 + 6c_2 + 3c_3 + 2c_4)^2 \\ a_{21} &= a_{12} = -50c_1 - 24c_2 - 9c_3 - 4c_4 - (10c_1 + 6c_2 + 3c_3 + 2c_4)(-5c_1 - 4c_2 - 3c_3 - 2c_4) \\ a_{20} &= a_{02} = 0 \\ a_{11} &= 25c_1 + 16c_2 + 9c_3 + 4c_4 - (-5c_1 - 4c_2 - 3c_3 - 2c_4)^2 \\ a_{10} &= a_{01} = a_{00} = 0. \end{aligned}$$

It can be seen that

$$a_{31} = a_{33} - a_{32}$$

 $a_{21} = a_{32} - a_{22}$
 $a_{11} = a_{33} + a_{22} - 2a_{32}$

therefore $a_{kl}=0$ (k, l=0, 1, 2, 3) holds if and only if

$$a_{33}=0, \quad a_{32}=0, \quad a_{22}=0$$

is valid. This gives the following system of equations:

$$(49) 25c_1 + 4c_9 = (5c_1 + 2c_9)^2$$

(50)
$$50c_1 + 12c_2 = (5c_1 + 2c_2)(10c_1 + 6c_2 + 3c_3 + 2c_4)$$

(51)
$$100c_1 + 36c_2 + 9c_3 + 4c_4 = (10c_1 + 6c_2 + 3c_3 + 2c_4)^2.$$

Choosing $c_1 = s$ arbitrarily we get from (49) that

(52)
$$c_2 = \frac{1}{2} [1 - 5s \pm (1 + 15s)^{1/2}].$$

In solving (50), (51) we may suppose that $5c_1+2c_2\neq 0$ (otherwise $5c_1+2c_2=0$, $50c_1+12c_2=0$ hence $c_1=c_2=0$ and then f would be a polynomial of degree ≤ 3 ,

i.e. f would be of the form (6)). From (50), (51) we get

$$3c_3 + 2c_4 = \frac{50c_1 + 12c_2}{5c_1 + 2c_2} - (10c_1 + 6c_2) = D_1$$

$$9c_3 + 4c_4 = \left(\frac{50c_1 + 12c_2}{5c_1 + 2c_2}\right)^2 - (100c_1 + 36c_2) = D_2$$

thus

$$c_3 = \frac{1}{3}(D_2 - 2D_1), \quad c_4 = \frac{1}{2}(3D_1 - D_2).$$

Expressing D_1 , D_2 by help of the parameter s we obtain

$$D_1 = 5/3[1+3s\mp(1+15s)^{1/2}], D_2 = 50/9[1+3s\mp(1+15s)^{1/2}]$$

further

(53)
$$c_3 = 20/27[1+3s\mp(1+15s)^{1/2}]$$

(54)
$$c_4 = -5/18[1+3s\mp(1+15s)^{1/2}]$$

and by (47)

(55)
$$c_5 = 1/27[1+3s\mp(1+15s)^{1/2}].$$

With $c_1=s$, (52), (53), (54), (55) we get exactly solution (7) from (46). This concludes the proof of our theorem.

References

- J. Acz\(\text{E}\) and Z. Dar\(\text{O}CZY\), On measures of information and their characterization. Academic Press. New York—San Francisco—London, 1975.
- Press, New York—San Francisco—London, 1975.

 [2] Z. DARÓCZY and A. JÁRAI, On measurable solutions of functional equations. Acta Math. Acad. Sci. Hung., 34 (1979), 105—116.
- [3] L. Losonczi, A characterization of entropies of degree. Metrika., 28 (1981), 237-244.
- [4] L. Losonczi, Functional equations of sum form. Publ. Math. Debrecen., 32 (1985), 57-71.
- [5] L. Losonczi and Gy. Maksa, The general solution of a functional equations of information theory. Glasnik Math., 16 (1981), 261—266.
- [6] L. LOSONCZI and GY. MAKSA, On some functional equations of the information theory. Acta Math. Acad. Sci. Hung., 39 (1982), 73—82.
- [7] GY. MAKSA, On the bounded solutions of a functional equation. Acta Math. Acad. Sci. Hung., 37 (1981), 445—450.
- [8] GY. MAKSA, The general solution of a functional equation arising in information theory. Acta Math. Acad. Sci. Hung., 49 (1987), 213—217.

(Received August 18, 1988)