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1. Introduction

Functional equations of sum form appear in characterizations of entropies
having the sum property (see e.g. AczéL—DARrSczy [1] p. 110, Losonczi [3]).
Examples are the equations

M) 3 3 far) = 3o+ S/
i=1j=1 i=1 =1

and

@ 3 S for)= 30 3 fO).
i=1j=1 i=1 =1

Here k, /=2 are fixed integers, (xy, ..., X)€Ixy (V15 ooy Y)I7 with

L= {(x1, .. ¥ =0, 2"’ x=1 (n=23,..)
=1

and f: [0, 1]-C is an unknown function.

Equations (1) and (2) have been solved under various assumptions on f. If
k, I=3 and fis measurable then applying a general result of Losonczi ([4] Theorem 4)
(1) and (2) can be reduced to the equations

SJi(xy) = yfa(x)+xA0)  x, yel0, 1]
H(xy) =f()£0) x, ye[0, 1]

Ji(x) = f(x)—f(0)+xkIf{0),
fo(x) = A(x)=xk(I-1)f(0), f3(x) =/(x)—x(k—1)]f(0).

Thus, solving (1), (2) and similar equations is simple if f is measurable and k, /=3.
Difficulties arise however if k=3, /=2 (k=2, I=3), k=I=2 or if fis not meas-
urable.

The measurable solutions and the solutions bounded on a set of positive meas-
ure of (1) are known if k, /=2 and k=3, /=2 respectively (DARGCZY—JARAI [2],

and

respectively, where
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MAKsA [7]). The general solution is however not known even if k, /=3. The only
result in this direction is a representation of the solution of (1) by help of certain
additive functions (LosoNczi—MAKsA [6]).

In case of equation (2) the situation is completely different. The general solu-
tion of (2) is known if k=3, /=3 (LosoNczI—MAKsA [5]) or k=3, /=2 and
() +f(1—x)#1 (MaksA[8]). Nothing has been known on the solutions if
k=I1=2.

The aim of this paper is to study equation (2) with k=/=2, that is the equation
3) Sep)+f (x(1=p)+f (1 =x)y)+/(1—-x)(1—-y)) =
= [fG)+fA=)ISD)+f(1=»] x,y€[0, 1].

We shall find all solutions of (3) in the class C,[0, 1], the space of all three times
continuously differentiable complex valued functions on [0, 1].

The behaviour of equation (3) is quite surprising.

First, the methods which have been used to find the general solution of (2)
if k=3, /=2 completely fail.

Second, new solutions arise. Some polynomials of degree 5 are solutions of
(3) but (2) with k=3, /=2 has no polynomial solution of degree 5 (different from x*).

2. Solution of the equation (3)

Our main result is the following
Theorem. If f: [0, 1]-C, f€C4[0, 1] is a solution of (3) then

) f(x) =x" x€[0,1]

or

(&) S(x) = gx+1)2[1—g£(1-g)"*] x€[0, 1]
or

©6) Jf(x)=r3+12[1-3r£(14+3)"3]x2+1/2[14rF(A+3r)"%]x x€[0, 1]
or

(7 f(x) =
= sx%+1/2[1 =55+ (1 + 155)2] x* + 1/54[1 4 3s F[1 + 155)V/2] (40x® — 15x2 + 2x)
x€[0, 1]

where Rep=3, p, q, r, s are complex constants. Conversely, the functions (4), (5),
(6), (7) are C4[0,1] solutions of (3) if p,q,r,scC are arbitrary constants with
Re p=3.

PrOOF. Suppose that f€C,[0, 1] satisfies (3). We shall deduce a differential
equation for f; solve it and select the solutions of (3) out of the solutions of our
differential equation. Let

®) h(x) = f(x) +/(1—x)
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then

) S+ (x(1 =)+ (1-x)p) + (1 =2)(1-y)) = h(x)h(y).

Differentiating with respect to y ones, twice, three times we obtain

(10) 2 Cey)=xf"(x(1 =)+ =) f((1=x)y) =1 =x) f (1 =x)(1 -y)) =
= h(x)'(y)

(1) x2fGy)+x2f(x(1=p)+A=xPf"(1=x)y)+(1 =22 f"(1—x)(1—)) =
= h(x)h"(y)

(12) X" (xp) == "(x(1 =)+ (1 =xPf (1 —x)y) = (1 =xPf (1 =x)(1—y)) =
= h(x)h"(y).

Substituting y=1 in (9), (10), (11), (12) we get
(13)  x"f® (@) +(1=x)" (1 =x)+(=1)"[x"+(1=x)1 /" (0) = h(x) K (1)

for n=0, 1,2, 3; x€[0, 1].
Differentiation of (13) and multiplication by 1—x yields

(149) A=)+ ()X @)= n(1 - (1—x) -
—(1=x D (1 —x)-+ (= == (L=2) =1 £ D (0) = (1=x) K () HP (1.

Adding equation (13) with n replaced by n+1 and equation (13) multiplied
by n to equation (14) all derivatives at the point 1—x disappear and we have

(15) nx"=1f O (x)+x2f @+ 1 (x)+ n(— 1)"x*~1f ™ (0)+
(=DM (=X fOH(0) = [KP (1) + B+ D (D] )+ B (1)1 —x) K (x)-

For n=0,1,2 (15) gives the following system of equations:

(16) S (x)=f(0) = K()h(x)+h(1)(1—-x)h'(x)
(17) £/ ) +x"(x)=f"(0)+[x*+(1=x)*] f(0) = [F(1)+ A" ()] A (x)+ K (D) (1 —x) h'(x)
(18) 2xf"(x)+x"(x) + 2xf"(0) — [x* + (1 —x)*] f(0) =

= [2h"(1)+ k(D] h(x) +h"(1) (1 — ) (x).

Denote by L,(x), Ly(x), Ls(x) the left hand side of (16), (17), (18) respectively.
At any fixed x€[0, 1] (16), (17), (18) may be considered as a linear homogeneous
system of algebraic equations for the unknowns -1, h(x), (1—x)h’(x). Since this
system has nontrivial solution its determinant must be zero:

Ly(x) K@) k()
(19) Ly(x) W()+h"(1) K(1)|=0.
Ly(x) 20"(1)+h"(1) k(1)
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Expanding this determinant by the elements of the first column we get
(20) Ay Ly (x)+ Ay Ly(x) + A3 Ly(x) = 0

where A; are the cofactors of L; (i=1, 2, 3) in (19).
To evaluate 4, we substitute x=0 in (17) We obtain that

S7(0) = [ (1)+h"(1)] A(0)+ K (1) '(0).
Since h(0)=h(1), h’(0)=—h"(1) we have

(21 Ay = K(1)*—[(1)+h"(D]h(1)= —f"(0).
Similarly, from (18) with x=0
(22) Ay = h(1)[2R"(1)+h"(1)] =K' (1) h"(1) = —f"(0).

To find A4; we differentiate (17) with respect to x. The resulting equation is
2f7(x)+xf"(x)+f"(0)(4x —2) = [A'(1)+h" (D] K’ (x)+ k' (1) [(1 —x) h"(x)— h'(x)].

Here the function x-—xf"(x) must be differentiable on [0, 1] since all other terms
in the equation are differentiable. Thus we may differentiate again and obtain

2f"(x)+(f ™ (%)) +4f"(0) = [H'(1) +h"(D)] A" (x)+ K (1) [(1 —x) h"(x) —2h"(x)].
Using the relation

(Xf” (¥))m0 = lim hf "(R)/h = £(0)

we get with x=0
3"(0)+4f"(0) = [’ (1)+h"(1)] A"(0) + h'(1) [A"'(0) — 2h"(0)].

By h”(0)=h"(1), h”(0)=—h"(1) the right hand side of this equation is exactly
A, hence
(23) A, = 37(0)+417(0).

The form of our differential equation (20) thus depends on the values f7(0),
S (0). We shall distinguish several cases.

Case 1. h(1)=f(1)+f(0)##1. Then from (13) with n=0
(29) h(x)[h(1)—1] = 2/(0)

therefore h(x)=constant. By (16) f'(x)—f"(0)=0 i.e. fis a linear function. Sub-
stitution shows that this is a solution of (3) if and only if fis of the form (5).

Case 2. h(1)=f(1)+f(0)=1. Then by (24) f(0)=0 therefore f(1)=1.
Subcase 2.1. h(1)=1, k'(1)=0, f”(0)=0. By (21) h"(1)=0 and from (17)
S ) +xf"(x) = f(0).
The general solution of this Euler’s differential equation is

f(x) =¢;+e; Inx+f(0)x x€[0, 1]
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with arbitrary constants ¢;, c¢;. Since f(0)=0, f€C,[0, 1] the constants ¢, ¢;
must be zero. f(x)=/f"(0)x is a solution of (3) if and only if f"(0)=0 or f(0)=1.
These solutions are included in (5).

Subcase 2.2. h(1)=1, K'(1)#0, f"(0)=0. From (21)
(R(D)+h"(1))/H'(1) = K'(1)/h(1) = p = 0.
Multiplying (16) by —p and adding it to (17) we get
(25) (1=p)f(x)+xf"(x) = (1-p) f(0).
The general solution of (25) is
JS(x) = c;+csxP+f'(0)x

with arbitrary constants ¢,, ¢,. f€C;[0, 1] implies that either ¢,=0 or p€ {1, 2}U
U{s€C|Res=3}. By f(0)=0, f(1)=1 we have ¢;=0, c;=1-17(0), i.e.

(26) JS(x) = [1=1(O]x"+/(0)x.

If p=1 then f(x)=x which is a solution of form (5).
If p+#1 then the substitution of (26) in (3) yields that

(1= OO +(1-x) =11 +(1-yy—1] = 0.

Hence (26) is a solution of (3) if and only if either 1—7"(0)=0 or f’(0)=0. In
the first case f is of the form (5), in the second f is of the form (4) if p=2 while f
is of the form (6) (with r=0) if p=2.

Subcase 2.3. h(1)=1, f"(0)0. By (21), (22), (23) we get from (20) that
Ly(x)+uLy(x)—(Bu+4)L,(x) =0
where u=f"(0)/f”(0). Using the definition of L; this can be written as
X2 (x)+ (u+2) xf7(x)—2(u+2) f/(x)+2(u+2) f(0)+2f"(0) x+f"(0) (x — x*) = 0.
Integrating from O to x and applying the formulas

x

[ 7@ dt = xf'(x)—f(x)+£(0),

0

x

S B dt = x27(x) - 2xf"(x)+ 2f(x) - 2f(0)

and the condition f(0)=0 we obtain
2
27) x*f"(x)+uxf'(x)—CBu+4)f(x) = %f”'(O) _xT (u+2)f"(0)—2x(u+2)f"(0).

Subcase 2.3.1. h(1)=1, f”(0)=0, u=f"(0)/f"(0)= —2. We show that this case
cannot occur. The general solution of (27) is

J7(0)
6

J(x) =y x+cpxt+ X2 = x+cyxt+cyx®
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with arbitrary constants ¢;, ¢,. The conditions f(1)=1, f”(0)#0, u= -2 give that
1 +catey=1, c3#0, 6¢cy/2c=—2 that is

(28) f(x) = cpx®— % C3x3+(14c¢4/2) x.
Substituting (28) in (3) we obtain, after a simple calculation, that

6cs(x*—x)(y*—y) = 0.

Hence ¢;=0 and c¢;= —%c-a:{) which is a contradiction.
Subcase 2.3.2. h(1)=1, f”(0):20, u=f"(0)/f"(0)# —2. In this case

e =L Q5 LO e )

is a particular solution of (27). The homogeneous equation corresponding to (27)
is an Euler’s equation with characteristic equation

(29) s+ (u—1)s—3Bu+4) =0.

We have to distinguish 2 cases again.

Subcase 2.3.2.1. h(1)=1, f"(0)#0, u= -2, ¥*+10u+17=0. Now wu=-5+
+¥8 and the corresponding root of (29) s,= i 358 —3+)2 has multiplicity 2.
The general solution of (27) is 2

J(x) =, x4 eyx Inx+g(x) x€(0,1].

Since f(0)=0 and f€Cy[0, 1] ¢;, c; must be zero. Thus

(30) f(x)=gx) = f”’éO) .’:"+-J:::,%(2 xX24+f(0)x = d; x>+ dpy x*+dyx

and by f(1)=1 d,+dy,+d;=1. Substituting (30) in (3) and using the condition
d,+d,+dy=1 we obtain

[(3d; +2d,)* —(9d,+4d,)] (x*—x)()*—y) =0
hence (30) is a solution of (3) if and only if
(3d,+2d,)* =9d,+4d,, dy =1-d,—d,
hold. Therefore, with &,=r

d, = —;[1 “3r (14302, dy= -;—[l-l-r:F(l +3r)).

We obtained solution (6) (with dy=0, 3dy/dy= —5+118).
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Subcase 2.3.2.2. h(1)=1, f"(0)=0, u= —2, u*+10u+17:0. In this case (29)
has two distinct roots sy, 5,. We may suppose that Re s;=Re s,. Due to the con-
dition w#—2 we have {s,s}MN{l,2,3}=0 therefore the general solution of
(27) is
(31) J(x) = ey x" +epx*r+g(x) x€(0,1]

with arbitrary constants ¢,, ¢,.

It would be a very long calculation to substitute (31) in (3). Therefore first
we try to satisfy (12). Substituting (31) in (12) we obtain after some rearrange-
ments that

(32) erky(x) , (y) +exka(x) I (y) = h(x)h”(y) x,y€(0, 1)
where

(33) L(y) =y ==y y€(0,1)

(34) ki(y) = X1+ (1—-x)% x€(0, 1)

(35) e = c¢si(s;i—1)(5,—2) (i=1,2).

Subcase 2.3.2.2.1. h(1)=1, f”(0)=0, u#—-2, w*+10u+17#0, h”(y)=0 if
y€(0,1). Now h is a polynomial of degree =2 and from (16) f is a polynomial
of degree =3 with f(0)=0, f(1)=1. Thus, as in the Subcase 2.3.2.1, f must be

of the form (6) (with dy#0, 3d,/dy# —5+V8).
Subcase 2.3.2.2.2. h(1)=1, f"(0)#0, uz —2, 1>+ 10u+17#0, h"”(y,)#0 for

some y,€(0, 1), [yo;é%]. From (32) we obtain that

(36) h(x) = B, ky(x)+ Byky(x)
with suitable constants B,, B,. With (36) we get from (32) that

BN kX)eh()—Bh"()]+ky(x)[e:lo(y)—B:h"(»)] = 0, x, y€(0, 1).

At this point we have to know if k,, k, (and /;, ;) are linearly independent or
not. First we deal with this question.

Lemma 1. Let sy, 5,€C, s5,7#5,. The functions k,, k, defined by (34) are linearly
dependent on (0, 1) if and only if 5,=0, s,=1 or s,=1, 5,=0.

PrOOF OF LEMMA 1. x%+(1—x)°=2=2[x+(1—Xx)] thus k,, k., are linearly de-
pendent for s;=0, s,=1 and s5,=1, 5,=0.

We show that apart from these cases k,, k, are linearly independent. Sup-
pose that

(38) Aky(x)+23ke(x) =0 x€(0, 1)
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holds with constants 4,, 4,. Then

(39) j‘lkl [%]"‘)t’ks \-;"J - 0
# 1 - " E 1 g

(40) 1k (5)+ 2kt =0
o o

(4]) f-]kl '2_ +}~2k2 L?, =0

are valid too. If s,+s,51 then
1 1
f 3) "2(5]|
~ <1
<(3) K(3)

thus by (39), (40) A,=4,=0, k,, k, are linearly independent.
lf S]_‘*‘Sg:]. but (lsll+l.5'2—1|)([-§'1'—1|+ISgD950 then

adl w1
4(3) 4 (3)

1 1
w(3) & (3)
therefore by (40), (41) A,=2,=0 and k,, k, are linearly independent.

Lemma 2. Let s,,5,¢C, 5,#5,. The functions l,, I, defined by (23) are linearly
dependent on (0, 1) if and only if $,=3 (5;#3) or 5,=3 (5,#3) or 5,=5, 5,=4 or
5 =4, S==5.

= N=n1=% (5, —5)(5; +5,—1) # 0

= 29=01=% 5, 55 (5, — 1) (53— 1) (5; —52) (5, +5,—5) # 0

PROOF OF LEMMA 2. It is easy to see that /;, /, are linearly dependent if s,, 5,
have the values listed in Lemma 2. We show that apart from these cases /;, /, are
linearly independent. This follows from the fact that one of the determinants

(@) o
o) e ()

= 213=517%2 (5, — 3) (53— 3) (52— 1) (51 +53—9)
r(l) £ (2]
(@) #()

= 2M=51=%2 (5, —3) (52— 3) (5, —4) (52 —4) (5; — 5) (52— 5) (52 —5,) (87 + 53— 13)

is nonzero if sy, 5, are not among the pairs listed in Lemma 2.

and
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Now we return to the proof of our theorem. We remark that the assumptions
on s,, S, in the Subcase 2.3.2.2 and in Lemmas 1, 2 are slightly different. In Sub-
case 2.3.2.2 Res;=Re sy, 5,75, and {5, 5} {l1,2,3}=0 are supposed while in
Lemmas 1, 2 only s,7s, is a priori assumed.

By {s;,%}{l,2,3}=0 and by Lemma 1 k,, k, are linearly independent thus
by (37)

(42) eth(y) = Bih”(y) y€(0,1)
(43) exly(y) = Byh”(y)  ye(0, 1).

If e;=e,=0 then ¢;=c¢;=0, f(x)=g(x) which is a solution of (3) if and only
if £ is of the form (6).
If e,e;=0 but one of e,, e,, say e,, is nonzero then e,=0, ¢,=0 and

(44) J(x) = ;x4 g(x).
Substituting this function in (3) we get
@5  akiNk()+gxy)+g(x(1-1)+g((1-x)p)+g(1-x)(1-y) =
=[eiky(x) +2(x)+g(1=x)][e; ks (») +&(») +g(1—-p)].
Differentiating (45) three times with respect to y we obtain

ek, (x)kY'(y) = [erky(x)+g(x)+g(1—x)]e; k7 (p)
therefore, by

aki(Y) =casi(s—1)(—-2)[p 2 —1-y)~% =0 if y=

| —

we get
ki(x) = cyky(x)+g(x)+g(1—x).

Differentiation three times shows that ¢;=1 and g(x)+g(1—x)=0. Hence from (45)
glxy)+g(x(1-y)+g((1-x)y)+g((1-x)(1-y)) =0
which implies that
gx)=0= fﬂéo) x4+ f”;O) x2+f'0)x, ie. f’(0)=0

which is a contradiction. Thus this case cannot occur.
If e;e,#0 then B,B,#0 since e/, e,/, are nonzero functions. From (42), (43)

Bie, I,(y)—B,e; 1;(y) =0 ye(0, 1),

i.e. /,, I, are linearly dependent on (0, 1). By Lemma 2 and our condition Res,=
=Re s, this holds if and only if s,=5, s,=4. From (31) with

(V) S7(0)
2

ca - 6 ’ c-l=

y G5 =f’(0)

(46) f(x) =Clx5+ng‘+C3xa+C4xz+Csx
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and by f(1)=1
(47) cs = 1—(c;+cp+c3+cy).

Substituting (46) in (3) we obtain after some simple calculations an equation
of the form

(48) kgs; lgs; aup(x) pi(y) =0

where p,(x)=x* (k=0,1,2) and p,(x)=x*—2x3 Since p,, Py, Ps, P3 are linearly
independent (48) holds if and only if a,=0 (k,/=0,1,2, 3). A simple but long
calculation gives that

Qs = 25¢,+4c,—(5¢y+2¢,)?

Qe = Ay = 50¢,+12¢,—(5¢,+ 2¢,) (10¢, + 6¢,+ 3¢5+ 2¢,)

ag = Gy = —25¢, —8cy— (5S¢, +2¢,)(—Scy —4cy—3c3—2¢,)

Qg0 = Qg3 =0

ays = 100¢; +36¢,+9¢y+4c, —(10¢; +6¢5+ 3¢5+ 2¢,)?

ay = Gy = —50¢; —24c;—9¢3—4c,—(10¢; +6¢3+ 33+ 2¢,) (— 5¢; —4ey~3e5—2¢,)
Ay = dpy = 0

ay;, = 25¢; +16¢3+9c5+4c,—(— 5¢; —4cy—3e3—2¢,)?

Gyo = Gy = Ggy = 0.

It can be seen that
Ay = dgg—dgs

Qy = Q33— Ay
Gy = Ggy+ Gy —20g,
therefore a,=0 (k, /=0, 1, 2, 3) holds if and only if
Oss =0, =0, ayu=0

is valid. This gives the following system of equations:

(49) 25¢, +4cy = (5¢y+2¢5)°
(50) 50c, + 12¢; = (5¢;+2¢5) (10¢; +6¢y+ 3¢5 +2¢,)
(51) 100c; +36¢5 +9¢s+4c, = (10, +6¢5+ 3¢y +2¢)*.

Choosing ¢;=s arbitrarily we get from (49) that
(52) G = %[l —Ss+(1+ 155)'2).

In solving (50), (51) we may suppose that 5¢;+2¢;#0 (otherwise 5S¢+ 2c,=0,
50¢;+12¢;=0 hence ¢;=c,=0 and then f would be a polynomial of degree =3,
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i.e. f would be of the form (6)). From (50), (51) we get

50¢; +12
50¢; +12¢, \*
9C3+4{‘4 == [——Sc:+2c22 ] —(10061+3‘602) = Da

thus
1 1
C3 = ‘E(Ds_zbﬂs €y = 5 (3D, —D,).

Expressing Dy, D, by help of the parameter s we obtain
D, = 5/3[1+3sF(1+155)4%, Dy = 50/9[1+3sF(1+155)4/2]

further

(53) ¢y = 20/27[143sF (1+155)V2]
(54) ¢y = —5/18[143sF (1+155)42]
and by (47)

(55) c; = 1/27[143sF (14 155)V3].

With ¢;=s, (52), (53), (54), (55) we get exactly solution (7) from (46). This
concludes the proof of our theorem.
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