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1. Introduction. We denote the set of all complete n-ary probability distribu-
tions by I, (n=2,3,...), thatis

n
Lo={(pyscnD): pi=Q, i=1, .83 g;p;= 1}.

For a fixed real number o, the entropy of degree « is a sequence {H3}s=. of func-
tions where HZ: I,—~R (R denotes the set of all real numbers) is defined by

@ =11 (3 pi—1) if a1

H:(ph—--s pn): n P

— 2 pilogp; if a=1
i=1

with the conventions 0*=0 for all «£R, log=log, and 0log 0=0. The entropy
of degree 1 is the Shannon entropy introduced by SHANNON [15]. For a=0, the
entropy of degree o was introduced by DARGCzY [6]. Because of the convention
0°=0 none of the functions HZ is constant. For example, H3(p,, .... p,)+1 gives
how many probabilities in (p,, ..., p,)EI, are different from zero.

The problem of characterization of the entropies of degree « is the following:
What properties have to be imposed upon a sequence of functions I,: IL—~R
(n=2, 3, ...) in order that the equality

In(pl! "'!pu) o~ H:(pl.s ""pn)

should hold for some «€R and for all (py, ..., p €L, n=2,3,.... This problem
is raised and extensively discussed in the book of AczéL and DARrGCzY [2].
We begin with three usual axioms for the sequence {I.}i—, (I,: I,-R,n=2,3, ...)

(A), a-additivity:
Lim(PrG1s <oos Prms «oos Puas -5 Pam) =
= Io(P1s «oos P) F In(q1s ooes @) + (21 * = 1) L(P1s o es Pw) In(G1s --25 Gim)
for some a€R and for all (py, ..., PREDLs (G1s +ovs Gm)€E s B, m=2,3, ....

12*



180 Gyula Maksa

(B) Sum property: There exists a function f: [0, 1]-R such that

In(pl’ veny Pu) = ‘é;f(pl)

for all (py, ..., p)ET,, n=2,3,.... (The function f is called a generating function

of {I,}=2.)
()

(C) Normalization:

These properties do not characterize {H2};~, therefore the authors investigating
this problem required a further property. Supposing that a sequence of functions
I,: I,-R (n=2, 3, ...) satisfies (A), with some «éR and (B) we have the following
system of functional equations for the generating function f of {I,};=,:

. 2 Zfme)= 310+ 3 fa)+@==0) 3 o) 310),

(Ph ---ypn)ena (41!---»‘fm)€rm; n,m=2, 39 sen e

In the case a=1 this system of functional equations was first studied by CHAUNDY
and McLkop [5]. They proved that the continuous solutions are of the form

) J(x) =cxlogx, x€[0,1]

with some c¢€R and with the convention 0log0=0. AcziL and DarOczy [1]
proved the same supposing only that f is continuous and the equation (1), holds
for all n=m=2. DARrOCzY [7] determined the measurable solutions of (1), in the
case n=3, m=2, f(1)=0. The author [13] proved the following result: If n=3
and m=2 are fixed in (1), and f'is a solution of (1), which is bounded on a set of
positive Lebesgue measure then

S(x) =cxlogx+bx+a, x€[0,]1]

with some a, b, c€R. In the case «71 supposing that (1), holds for all n=2, m=2
the continuous solutions were determined by BEHARA and NATH [3], KANNAPPAN [10]
and MitTAL [14]. For fixed n=3, m=2 Losonczi [11] found the measurable solu-
tions of (1),.

From the results mentioned above such a type of characterization theorems
can be obtained for {H3};~, in which (A),, (B), (C) and a regularity property of
the generating function are supposed. Our purpose in this paper is to give charac-
terization theorems for {H3}s~, in which all conditions concern the sequence {/,};~,
itself and we suppose nothing on the generating function. (We suppose its exist-
ence only.)

Therefore our further axioms for {I,};.. will be the following:

(D), Boundedness: There exists K€R such that
[ I3(P1s P2s P9l = K, (P15 Pas Po)ET.
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(D) Boundedness: The function t—+I,(t,1—1), t€[0, 1] is bounded on a subset
of positive Lebesgue measure of [0, 1].

(F) Nonnegativity: The function t—1,(t,1—1), t€[0, 1] is nonnegative on a
subset of positive Lebesgue measure of [0, 1].

2. The case a=1. First, we prove a characterization theorem for the Shannon
entropy.

Theorem 1. A sequence {I}i~. of functions I,: I,-~R (n=2,3,..) is the
Shannon entropy {H)}nwo if and only if {I,}is has the properties (A),, (B), (C)
and (D), .

Proor. It can easily be verified that the Shannon entropy satisfies the axioms
(A),, (B), (C) and (D), thus we only deal with the converse. Suppose that {,}=,
satisfies (A),, (B), (C) and (D), and let f: [0, 1]-R be a generating function of
{I,}i=2. Then fsatisfies (1), for all n=2, m=2. With the substitution (1, 0, ..., 0)€I,,
(G1s «oes gm)E L, (1), implies that (n—1)(m—1)f(0)=f(1). Since this is valid for all
n=2, m=2 we have that f(0)=f(1)=0.

Let F be the periodic extension of f'to R with the period 1 and define the func-

tion g on R? by
3) g(x,y) = F(x+y)—F(x)—F(y).

We shall show that g is bounded on R2 Since g is periodic in both variables with
the period 1, it is enough to show that g is bounded on [0, 1]X[0, 1]. Moreover,
because of the identity

g(x,y) =gx,1-x)+g(y, 1-y)—g(l—x, 1—-y)—g(2—x—y, x+y—1)
it is enough to show that g is bounded on the set
A= {x,y): x,», x+y€[0, 1]}.
Let (x, y)€4. Then, by (B) and (3), we get
L(l—x—y,x+y, 0)—Li(x, y, 1 —=x—=y) = f(x+y)=f(x)=f(») = g(x, y),

therefore (D), implies that g is bounded on 4. Thus g is bounded on R% too.
Applying Theorem 1.2 of pE BRUDN [4] (or the stability theorem of Hyers [9])

we obtain that F is the sum of a function bounded on R and a function a: R—R

satisfying the Cauchy functional equation a(x+y)=a(x)+a(y) for all x, y€R.

It follows that
S(x) =f*(x)+a(x), x€[0,1]

where f*: [0, 1]-R is bounded and we may suppose that a(1)=0. Therefore /*
is a bounded solution of (1), thus, by [13], /* has the form (2) with some c€R.
Finally, for (py, ..., pn»)€I, we have

L(p, ap) = 3F0) = 31" ()+a(1) = ¢ 3 pilogpi=—cHips, . p)

where, by (C), ¢=—1 and the proof is complete.
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In this theorem the boundedness (D), cannot be replaced by boundedness

from one side or, in particular, by nonnegativity. In connection with this fact we
present an example.

A function d: R—R is called a real derivation if

d(x+y) =d(x)+d(y) and d(xy)=xd(y)+yd(x)

hold for all x, y¢R. It is known that there exist nonidentically zero real deriva-
tions (see ZARIsKI and SAMUEL [16]). Define the function f on [0, 1] by

£08) i @——xlogx if x€]0, 1]

0 T x=0

where d is a nonidentically zero real derivation, and define 7, on I, by

“ L(pys s Pa) = IZ;f(Pi) (n=2,3,..).
Using the properties of d we find that

&) S(xy) = xf(»)+2f(x)+2d(x)d(y); x, y€[0, 1].

Since d(1)=0, (5) and (4) imply that {/,};>, defined by (4) has the property (A,).
(B) and (C) are obviously satisfied by {/,}i>,. It has been proved by DARGCZY
and MAKsA [8] that

d(u+v)? d(u)* dw)*
+
u+v u v

1A

for all positive numbers » and ». Since
—(u+v)log(u+v)=—ulogu—vlogry (u=0, v=0)

is also true, we have that f(x+»)=f(x)+f(y) for all (x,y)ed. Using this in-
equality several times, (4) implies that

L(Pys .o s D) Ef(f_Z; p) =f(1)=0
for all (py, ..., €L, n=2,3,.... Finally, we show that {I,};>, is different from
{HY}s. Indeed, suppose that I,(x,1—x)=H}(x,1—x) for all x€[0,1]. Then

- AP . dil=xP . dix)
i e T x(1=x)

0

for all x€]0, 1[, which implies the contradiction that d is identically zero.

3. The case a7 1. In this case the generating functions of {/,};2, (/,: I,~R,
n=2, 3, ...) satisfying (A), and (B) have been determined by LosoNczi and MAKSA

[12]. The following theorem is a simple consequence of this result so its proof is
omitted.
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Theorem 2. Let a=1. The sequence {I,};~. of functions I,: I,—R (n=2,3, ...)
satisfies (A),, (B) and (C) if and only if there exists a function h: [0, 1]—~R such that

©) h(xp) = h(Ih(y); x, y€[0, 1]

() h(0) = 0, h(—;—] =2

and

®) L(P1s s ) = (2*-'—1)-1(‘=2"1 h(p)—1)

for all (py, ...,p)EIl, and n=2,3, ....

In connection with the solutions h: [0, 1]-R of (6) we mention the well-
known facts that h(x)=0 for all x€[0, 1], and if /& is bounded on a subset of [0, 1]
of positive Lebesgue measure and (7) is also satisfied then

(&) h(x) = x*, x€[0, 1]
with the convention 0*=0.
Thus we can easily prove the following two theorems.

Theorem 3. Let a=1. A sequence {lI,};-s of functions I,: I,—~R (n=2,3,...)
is the entropy of degree o. {Hi}i= o if and only if {I,};, has the properties (A),, (B),
(C) and (D).

ProoF. By Theorem 2, {I,};>, satisfies (A),, (B) and (C) if and only if there
exists h: [0, 1]—-R with the properties (6), (7) and (8). If (D) holds too then

0=h(®)=2" =D)Lt 1-0)—h(1-0)+1= 2" *=1)L(1, 1-0)+1, t€[0, 1]

shows that h is also bounded on a subset of positive Lebesgue measure of [0, 1].
Thus (9) and (8) imply that {I,}im.={Hj}r=s. Since h(x)=x* x€[0, 1] satisfies
(6) and (7) and Theorem 2 yields the converse.

Theorem 4. Let a=>1. A sequence {I,}n.s of functions I,: I,-R (n=2,3,..)
is the entropy of degree a {Hj}nes if and only if {I,};—. has the properties (A),, (B),
(C) and (E).

PRrOOF. Applying again Theorem 2, {I,};i. satisfies (A),, (B) and (C) if and
only if there exists h: [0, 1]—-R with the properties (6), (7) and (8). If (E) holds

too then
0=h()=2" =D)Lt 1-O)—h(1—-)+1=1

is valid on a subset of positive Lebesgue measure of [0, 1]. Thus we have again (9)
and Theorem 2 implies Theoiem 4.
In the case x<1 Theorem4 does not work. In what follows we present an

example. First, we verify an inequality.

Lemma. Let a, b, a€R such that a=>0, b>0 and a<1. Then

(10) b(a+1)* < b**1+a%
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Proor. Let a=0 be fixed and
@(b) = b(a+1)*~b**t'—a*, b=0.

Then @'(b)=(a+1)*—(a+1)b*=(a+1)[(a+1)*~*—b°]. This implies that ¢’(b)=0
if and only if b€]0, b)) where b,=(a+1)*~"% Thus we have

(p(b) = (P(bo) - (a+])((:—1)/a)+:__(a+ I)((z-l),ra)(a+1)_az =
e a[(a+])(u—l)(l+(lfa))_az—1] s a[{a+ 1):—1_03—1] =0

which proves (10).
Let o<1 be fixed and define the function H on [0, + [ by

20 x>0
H("')={o if x=0
where d is a nonidentically zero real derivation. An easy calculation shows that
(11) H(xy) = H(x)H(y); x, ye[0, +o<[

and H[%]=2"“, H(0)=0. Let x>0 and a=x, b=2-W&/X=+1)  Then, applying
our lemma and using that d(x)=d(x+1), (10) implies that

(x+1)* 2= @x)/x(x+1) — 9=(d(x)/x)) 4 x*
and
(x_+_ l)a2d(x+1)#(x+ 1) o xzzd(x)fx_}_ 1,

that is H(x+1)<=H(x)+1.
This inequality and (11) give that

(12) H(x+y)= H(x)+H(y); x,y€[0, +o[.
Let now h(x)=H(x) if x€[0,1] and

In(pls '-"pn) = (21—«__1)—1(-;:. h(px‘)_l); (PI’ ot pu)e‘r;!! n= 25 3! ses e

Then it follows from Theorem 2 that {/,};_, satisfies (A),, (B) and (C). Using (12)
several times, we obtain

L(prs oo pa) = @ =)TH (S H(P)—1) = @ =D (H( 2 p)—1) =
=@"-*=1)"Y(H(1)-1) =0
for all (py, ..., p€L,, n=2,3,.... Finally, we show that {/,};7, is different from
{H}a-2. Indeed, suppose that I,(x, 1 —x)=H,(x,1—x) for all x€[0,1]. Then
h(x)+h(1 —x)=x*+(1—x)% whence
0=h(x)=hx)+h(l-x) =x*+(1—x)*

which shows that h is bounded on a subset of positive Lebesgue measure of [0, 1]
and thus we have (9). This implies that 4 is identically zero which is a contradiction.
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