The role of boundedness and nonnegativity in characterizing entropies of degree α

By GYULA MAKSA (Debrecen)

Dedicated to Professor Zoltán Daróczy on his 50th birthday

1. Introduction. We denote the set of all complete *n*-ary probability distributions by Γ_n (n=2, 3, ...), that is

$$\Gamma_n = \{(p_1, ..., p_n): p_i \ge 0, i = 1, ..., n; \sum_{i=1}^n p_i = 1\}.$$

For a fixed real number α , the entropy of degree α is a sequence $\{H_n^{\alpha}\}_{n=2}^{\infty}$ of functions where H_n^{α} : $\Gamma_n \to \mathbb{R}$ (R denotes the set of all real numbers) is defined by

$$H_n^{\alpha}(p_1, ..., p_n) = \begin{cases} (2^{1-\alpha} - 1)^{-1} \left(\sum_{i=1}^n p_i^{\alpha} - 1 \right) & \text{if } \alpha \neq 1 \\ -\sum_{i=1}^n p_i \log p_i & \text{if } \alpha = 1 \end{cases}$$

with the conventions $0^{\alpha}=0$ for all $\alpha \in \mathbb{R}$, $\log = \log_2$ and $0 \log 0 = 0$. The entropy of degree 1 is the Shannon entropy introduced by Shannon [15]. For $\alpha > 0$, the entropy of degree α was introduced by Daróczy [6]. Because of the convention $0^0=0$ none of the functions H_n^{α} is constant. For example, $H_n^0(p_1, ..., p_n)+1$ gives how many probabilities in $(p_1, ..., p_n) \in \Gamma_n$ are different from zero.

The problem of characterization of the entropies of degree α is the following: What properties have to be imposed upon a sequence of functions $I_n: \Gamma_n \to \mathbb{R}$ (n=2, 3, ...) in order that the equality

$$I_n(p_1,...,p_n)=H_n^{\alpha}(p_1,...,p_n)$$

should hold for some $\alpha \in \mathbb{R}$ and for all $(p_1, ..., p_n) \in \Gamma_n$, n=2, 3, ... This problem is raised and extensively discussed in the book of Aczél and Daróczy [2].

We begin with three usual axioms for the sequence $\{I_n\}_{n=2}^{\infty}$ $(I_n: \Gamma_n \to \mathbb{R}, n=2, 3, ...)$

(A)_α α-additivity:

$$I_{nm}(p_1 q_1, ..., p_1 q_m, ..., p_n q_1, ..., p_n q_m) =$$

$$= I_n(p_1, ..., p_n) + I_m(q_1, ..., q_m) + (2^{1-\alpha} - 1)I_n(p_1, ..., p_n)I_m(q_1, ..., q_m)$$

for some $\alpha \in \mathbb{R}$ and for all $(p_1, ..., p_n) \in \Gamma_n$, $(q_1, ..., q_m) \in \Gamma_m$; n, m = 2, 3, ...

(B) Sum property: There exists a function $f: [0, 1] \rightarrow \mathbb{R}$ such that

$$I_n(p_1, ..., p_n) = \sum_{i=1}^n f(p_i)$$

for all $(p_1, ..., p_n) \in \Gamma_n$, n=2, 3, ... (The function f is called a generating function of $\{I_n\}_{n=2}^{\infty}$.)

(C) Normalization:

$$I_2\left(\frac{1}{2}, \frac{1}{2}\right) = 1.$$

These properties do not characterize $\{H_n^{\alpha}\}_{n=2}^{\infty}$ therefore the authors investigating this problem required a further property. Supposing that a sequence of functions $I_n: \Gamma_n \to \mathbb{R} \ (n=2, 3, ...)$ satisfies $(A)_{\alpha}$ with some $\alpha \in \mathbb{R}$ and (B) we have the following system of functional equations for the generating function f of $\{I_n\}_{n=2}^{\infty}$:

$$(1)_{\alpha} \qquad \sum_{i=1}^{n} \sum_{j=1}^{m} f(p_{i}q_{j}) = \sum_{i=1}^{n} f(p_{i}) + \sum_{j=1}^{m} f(q_{j}) + (2^{1-\alpha} - 1) \sum_{i=1}^{n} f(p_{i}) \sum_{j=1}^{m} f(q_{j}),$$

$$(p_{1}, ..., p_{n}) \in \Gamma_{n}, \quad (q_{1}, ..., q_{m}) \in \Gamma_{m}; \quad n, m = 2, 3,$$

In the case $\alpha=1$ this system of functional equations was first studied by CHAUNDY and McLeod [5]. They proved that the continuous solutions are of the form

(2)
$$f(x) = cx \log x, x \in [0, 1]$$

with some $c \in \mathbb{R}$ and with the convention $0 \log 0 = 0$. Aczél and Daróczy [1] proved the same supposing only that f is continuous and the equation $(1)_1$ holds for all $n=m\geq 2$. Daróczy [7] determined the measurable solutions of $(1)_1$ in the case n=3, m=2, f(1)=0. The author [13] proved the following result: If $n\geq 3$ and $m\geq 2$ are fixed in $(1)_1$ and f is a solution of $(1)_1$ which is bounded on a set of positive Lebesgue measure then

$$f(x) = cx \log x + bx + a, \quad x \in [0, 1]$$

with some $a, b, c \in \mathbb{R}$. In the case $\alpha \neq 1$ supposing that $(1)_{\alpha}$ holds for all $n \geq 2$, $m \geq 2$ the continuous solutions were determined by Behara and Nath [3], Kannappan [10] and MITTAL [14]. For fixed $n \geq 3$, $m \geq 2$ Losonczi [11] found the measurable solutions of $(1)_{\alpha}$.

From the results mentioned above such a type of characterization theorems can be obtained for $\{H_n^a\}_{n=2}^{\infty}$ in which $(A)_{\alpha}$, (B), (C) and a regularity property of the generating function are supposed. Our purpose in this paper is to give characterization theorems for $\{H_n^a\}_{n=2}^{\infty}$ in which all conditions concern the sequence $\{I_n\}_{n=2}^{\infty}$ itself and we suppose nothing on the generating function. (We suppose its existence only.)

Therefore our further axioms for $\{I_n\}_{n=2}^{\infty}$ will be the following:

(D)₁ Boundedness: There exists $K \in \mathbb{R}$ such that

$$|I_3(p_1, p_2, p_3)| \leq K, (p_1, p_2, p_3) \in \Gamma_3.$$

- (D) Boundedness: The function $t \rightarrow I_2(t, 1-t)$, $t \in [0, 1]$ is bounded on a subset of positive Lebesgue measure of [0, 1].
- (F) Nonnegativity: The function $t \rightarrow I_2(t, 1-t)$, $t \in [0, 1]$ is nonnegative on a subset of positive Lebesgue measure of [0, 1].
- 2. The case $\alpha=1$. First, we prove a characterization theorem for the Shannon entropy.

Theorem 1. A sequence $\{I_n\}_{n=2}^{\infty}$ of functions $I_n: \Gamma_n \to \mathbb{R}$ (n=2,3,...) is the Shannon entropy $\{H_n^1\}_{n=2}^{\infty}$ if and only if $\{I_n\}_{n=2}^{\infty}$ has the properties $(A)_1$, (B), (C) and $(D)_1$.

PROOF. It can easily be verified that the Shannon entropy satisfies the axioms $(A)_1$, (B), (C) and $(D)_1$ thus we only deal with the converse. Suppose that $\{I_n\}_{n=2}^{\infty}$ satisfies $(A)_1$, (B), (C) and $(D)_1$ and let $f: [0,1] \rightarrow \mathbb{R}$ be a generating function of $\{I_n\}_{n=2}^{\infty}$. Then f satisfies $(1)_1$ for all $n \ge 2$, $m \ge 2$. With the substitution $(1,0,\ldots,0) \in \Gamma_n$, $(q_1,\ldots,q_m) \in \Gamma_m$, $(1)_1$ implies that (n-1)(m-1)f(0)=f(1). Since this is valid for all $n \ge 2$, $m \ge 2$ we have that f(0)=f(1)=0.

Let F be the periodic extension of f to \mathbb{R} with the period 1 and define the function g on \mathbb{R}^2 by

(3)
$$g(x, y) = F(x+y) - F(x) - F(y)$$
.

We shall show that g is bounded on \mathbb{R}^2 . Since g is periodic in both variables with the period 1, it is enough to show that g is bounded on $[0, 1] \times [0, 1]$. Moreover, because of the identity

$$g(x, y) = g(x, 1-x)+g(y, 1-y)-g(1-x, 1-y)-g(2-x-y, x+y-1)$$

it is enough to show that g is bounded on the set

$$\triangle = \{x, y\}: x, y, x+y \in [0, 1]\}.$$

Let $(x, y) \in \Delta$. Then, by (B) and (3), we get

$$I_3(1-x-y, x+y, 0)-I_3(x, y, 1-x-y)=f(x+y)-f(x)-f(y)=g(x, y),$$

therefore (D)₁ implies that g is bounded on Δ . Thus g is bounded on \mathbb{R}^2 , too.

Applying Theorem 1.2 of DE BRUIN [4] (or the stability theorem of HYERS [9]) we obtain that F is the sum of a function bounded on \mathbb{R} and a function $a: \mathbb{R} \to \mathbb{R}$ satisfying the Cauchy functional equation a(x+y)=a(x)+a(y) for all $x, y \in \mathbb{R}$. It follows that

$$f(x) = f^*(x) + a(x), x \in [0, 1]$$

where $f^*: [0, 1] \to \mathbb{R}$ is bounded and we may suppose that a(1) = 0. Therefore f^* is a bounded solution of $(1)_1$, thus, by [13], f^* has the form (2) with some $c \in \mathbb{R}$. Finally, for $(p_1, ..., p_n) \in \Gamma_n$ we have

$$I_n(p_1, ..., p_n) = \sum_{i=1}^n f(p_i) = \sum_{i=1}^n f^*(p_i) + a(1) = c \sum_{i=1}^n p_i \log p_i = -cH_n^1(p_1, ..., p_n)$$

where, by (C), c=-1 and the proof is complete.

In this theorem the boundedness (D)₁ cannot be replaced by boundedness from one side or, in particular, by nonnegativity. In connection with this fact we present an *example*.

A function $d: \mathbb{R} \rightarrow \mathbb{R}$ is called a real derivation if

$$d(x+y) = d(x)+d(y)$$
 and $d(xy) = x d(y)+y d(x)$

hold for all $x, y \in \mathbb{R}$. It is known that there exist nonidentically zero real derivations (see ZARISKI and SAMUEL [16]). Define the function f on [0, 1] by

$$f(x) = \begin{cases} \frac{d(x)^2}{x} - x \log x & \text{if } x \in]0, 1] \\ 0 & \text{if } x = 0 \end{cases}$$

where d is a nonidentically zero real derivation, and define I_n on Γ_n by

(4)
$$I_n(p_1, ..., p_n) = \sum_{i=1}^n f(p_i) \quad (n = 2, 3, ...).$$

Using the properties of d we find that

(5)
$$f(xy) = xf(y) + yf(x) + 2d(x)d(y); \quad x, y \in [0, 1].$$

Since d(1)=0, (5) and (4) imply that $\{I_n\}_{n=2}^{\infty}$ defined by (4) has the property (A₁). (B) and (C) are obviously satisfied by $\{I_n\}_{n=2}^{\infty}$. It has been proved by DARÓCZY and MAKSA [8] that

$$\frac{d(u+v)^2}{u+v} \le \frac{d(u)^2}{u} + \frac{d(v)^2}{v}$$

for all positive numbers u and v. Since

$$-(u+v)\log(u+v) \le -u\log u - v\log v \quad (u>0, v>0)$$

is also true, we have that $f(x+y) \le f(x) + f(y)$ for all $(x, y) \in \Delta$. Using this inequality several times, (4) implies that

$$I_n(p_1, ..., p_n) \ge f\left(\sum_{i=1}^n p_i\right) = f(1) = 0$$

for all $(p_1, ..., p_n) \in \Gamma_n$, n=2, 3, ... Finally, we show that $\{I_n\}_{n=2}^{\infty}$ is different from $\{H_n^1\}_{n=2}^{\infty}$. Indeed, suppose that $I_2(x, 1-x) = H_2^1(x, 1-x)$ for all $x \in [0, 1]$. Then

$$0 = \frac{d(x)^2}{x} + \frac{d(1-x)^2}{1-x} = \frac{d(x)^2}{x(1-x)}$$

for all $x \in]0, 1[$, which implies the contradiction that d is identically zero.

3. The case $\alpha \neq 1$. In this case the generating functions of $\{I_n\}_{n=2}^{\infty}$ $(I_n: \Gamma_n \to \mathbb{R}, n=2, 3, ...)$ satisfying $(A)_{\alpha}$ and (B) have been determined by Losonczi and Maksa [12]. The following theorem is a simple consequence of this result so its proof is omitted.

Theorem 2. Let $\alpha \neq 1$. The sequence $\{I_n\}_{n=2}^{\infty}$ of functions $I_n: \Gamma_n \to \mathbb{R} \ (n=2,3,...)$ satisfies $(A)_{\alpha}$, (B) and (C) if and only if there exists a function $h: [0, 1] \rightarrow \mathbb{R}$ such that

(6)
$$h(xy) = h(x)h(y); x, y \in [0, 1]$$

(7)
$$h(0) = 0, h\left(\frac{1}{2}\right) = 2^{-\alpha}$$

and

(8)
$$I_n(p_1, ..., p_n) = (2^{1-\alpha} - 1)^{-1} \left(\sum_{i=1}^n h(p_i) - 1\right)$$

for all $(p_1, ..., p_n) \in \Gamma_n$ and n=2, 3, ...

In connection with the solutions $h: [0, 1] \rightarrow \mathbb{R}$ of (6) we mention the wellknown facts that $h(x) \ge 0$ for all $x \in [0, 1]$, and if h is bounded on a subset of [0, 1] of positive Lebesgue measure and (7) is also satisfied then

(9)
$$h(x) = x^{\alpha}, x \in [0, 1]$$

with the convention $0^{\alpha}=0$.

Thus we can easily prove the following two theorems.

Theorem 3. Let $\alpha \neq 1$. A sequence $\{I_n\}_{n=2}^{\infty}$ of functions $I_n: \Gamma_n \to \mathbb{R} \ (n=2, 3, ...)$ is the entropy of degree α $\{H_n^{\alpha}\}_{n=2}^{\infty}$ if and only if $\{I_n\}_{n=2}^{\infty}$ has the properties $(A)_{\alpha}$, (B), (C) and (D).

PROOF. By Theorem 2, $\{I_n\}_{n=2}^{\infty}$ satisfies $(A)_{\alpha}$, (B) and (C) if and only if there exists $h: [0, 1] \rightarrow \mathbb{R}$ with the properties (6), (7) and (8). If (D) holds too then

$$0 \leq h(t) = (2^{1-\alpha}-1)I_2(t, 1-t) - h(1-t) + 1 \leq (2^{1-\alpha}-1)I_2(t, 1-t) + 1, \quad t \in [0, 1]$$

shows that h is also bounded on a subset of positive Lebesgue measure of [0, 1]. Thus (9) and (8) imply that $\{I_n\}_{n=2}^{\infty} = \{H_n^{\alpha}\}_{n=2}^{\infty}$. Since $h(x) = x^{\alpha}$, $x \in [0, 1]$ satisfies (6) and (7) and Theorem 2 yields the converse.

Theorem 4. Let $\alpha > 1$. A sequence $\{I_n\}_{n=2}^{\infty}$ of functions $I_n: \Gamma_n \to \mathbb{R} \ (n=2, 3, ...)$ is the entropy of degree α $\{H_n^{\alpha}\}_{n=2}^{\infty}$ if and only if $\{I_n\}_{n=2}^{\infty}$ has the properties $(A)_{\alpha}$, (B), (C) and (E).

PROOF. Applying again Theorem 2, $\{I_n\}_{n=2}^{\infty}$ satisfies $(A)_{\alpha}$, (B) and (C) if and only if there exists $h: [0, 1] \rightarrow \mathbb{R}$ with the properties (6), (7) and (8). If (E) holds too then

$$0 \le h(t) = (2^{1-\alpha}-1)I_2(t, 1-t)-h(1-t)+1 \le 1$$

is valid on a subset of positive Lebesgue measure of [0, 1]. Thus we have again (9)

and Theorem 2 implies Theorem 4.

In the case $\alpha < 1$ Theorem 4 does not work. In what follows we present an example. First, we verify an inequality.

Lemma. Let $a, b, \alpha \in \mathbb{R}$ such that a>0, b>0 and $\alpha<1$. Then

(10)
$$b(a+1)^{\alpha} < b^{a+1} + a^{\alpha}.$$

PROOF. Let a>0 be fixed and

$$\varphi(b) = b(a+1)^{\alpha} - b^{\alpha+1} - a^{\alpha}, \quad b > 0.$$

Then $\varphi'(b) = (a+1)^{\alpha} - (a+1)b^{\alpha} = (a+1)[(a+1)^{\alpha-1} - b^{\alpha}]$. This implies that $\varphi'(b) \ge 0$ if and only if $b \in]0, b_0]$ where $b_0 = (a+1)^{\alpha-1/a}$. Thus we have

$$\varphi(b) \le \varphi(b_0) = (a+1)^{((\alpha-1)/a)+\alpha} - (a+1)^{((\alpha-1)/a)(a+1)} - a^{\alpha} =$$

$$= a[(a+1)^{(\alpha-1)(1+(1/a))} - a^{\alpha-1}] < a[(a+1)^{\alpha-1} - a^{\alpha-1}] < 0$$

which proves (10).

Let $\alpha < 1$ be fixed and define the function H on $[0, +\infty[$ by

$$H(x) = \begin{cases} x^x 2^{d(x)/x} & \text{if} \quad x > 0\\ 0 & \text{if} \quad x = 0 \end{cases}$$

where d is a nonidentically zero real derivation. An easy calculation shows that

(11)
$$H(xy) = H(x)H(y); x, y \in [0, +\infty]$$

(11) $H(xy) = H(x)H(y); \quad x, y \in [0, +\infty[$ and $H\left(\frac{1}{2}\right) = 2^{-\alpha}, H(0) = 0$. Let x > 0 and $a = x, b = 2^{-(d(x)/x(x+1))}$. Then, applying our lemma and using that d(x)=d(x+1), (10) implies that

$$(x+1)^{\alpha} 2^{-(d(x)/x(x+1))} < 2^{-(d(x)/x)} + x^{\alpha}$$

and

$$(x+1)^{\alpha} 2^{d(x+1)/(x+1)} < x^{\alpha} 2^{d(x)/x} + 1,$$

that is H(x+1) < H(x) + 1.

This inequality and (11) give that

(12)
$$H(x+y) \le H(x) + H(y); \quad x, y \in [0, +\infty[.$$

Let now h(x)=H(x) if $x\in[0,1]$ and

$$I_n(p_1, ..., p_n) = (2^{1-\alpha}-1)^{-1} \left(\sum_{i=1}^n h(p_i)-1\right); \quad (p_1, ..., p_n) \in \Gamma_n, \ n=2, 3,$$

Then it follows from Theorem 2 that $\{I_n\}_{n=2}^{\infty}$ satisfies (A)_x, (B) and (C). Using (12) several times, we obtain

$$I_n(p_1, ..., p_n) = (2^{1-\alpha} - 1)^{-1} \left(\sum_{i=1}^n H(p_i) - 1 \right) \ge (2^{1-\alpha} - 1)^{-1} \left(H\left(\sum_{i=1}^n p_i \right) - 1 \right) =$$

$$= (2^{1-\alpha} - 1)^{-1} \left(H(1) - 1 \right) = 0$$

for all $(p_1, ..., p_n) \in \Gamma_n$, n=2, 3, ... Finally, we show that $\{I_n\}_{n=2}^{\infty}$ is different from $\{H_n^{\alpha}\}_{n=2}^{\infty}$. Indeed, suppose that $I_2(x, 1-x) = H_2(x, 1-x)$ for all $x \in [0, 1]$. Then $h(x) + h(1-x) = x^{\alpha} + (1-x)^{\alpha}$, whence

$$0 \le h(x) \le h(x) + h(1-x) = x^{\alpha} + (1-x)^{\alpha}$$

which shows that h is bounded on a subset of positive Lebesgue measure of [0, 1]and thus we have (9). This implies that d is identically zero which is a contradiction.

References

- J. Acz\(\text{L}\) and Z. Dar\(\text{o}\)czy, Characterisierung der Entropien positiver Ordnung und der Shannonschen Entropie, Acta Math. Acad. Sci. Hungar., 14 (1963), 95—121.
- [2] J. Acz\(\text{L}\) and Z. Dar\(\text{o}czy\), On measures of information and their characterizations, Academic Press (New York—San Francisco—London, 1975).
- [3] M. Behara and P. Nath, Additive and non-additive entropies of finite measurable partitions, Probability and Information Theory II, Lecture Notes in Math., 296 (1973), 102—138.
- [4] N. G. DE BRUIJN, Functions whose differences belong to a given class, Nieuw Arch. Wisk., 23 (1951), 194—218.
- [5] T. W. CHAUNDY and J. B. McLeod, On a functional equation, Edinburgh Math. Notes, 43 (1960), 7—8.
- [6] Z. DARÓCZY, Generalized information functions, Information and Control, 16 (1970), 36-51.
- [7] Z. DARÓCZY, On the measurable solutions of a functional equation, Acta Math. Acad. Sci. Hungar., 22 (1971), 11—14.
- [8] Z. Daróczy and Gy. Maksa, Nonnegative information functions, In analytic Function Methods in Probability and Statistics, Colloquia Math. Soc. J. Bolyai, 21 (1979), 65—76.
- [9] D. H. HYERS, On the stability of the linear functional equation, Proc. Math. Acad. Sci. U.S.A., 27 (1941), 222—224.
- [10] PL. KANNAPPAN, On a generalization of some measures in information theory, Glasnik Mat., 9 (29), 1974), 81—93.
- [11] L. Losonczi, A characterization of entropies of degree a, Metrika, 28 (1981), 237-244.
- [12] L. LOSONCZI and GY. MAKSA, On some functional equations of the information theory, Acta Math. Acad. Sci. Hungar., 39 (1982), 73—82.
- [13] GY. MAKSA, On the bounded solutions of a functional equation, Acta Math. Acad. Sci. Hungar., 37 (1981), 445—450.
- [14] D. P. MITTAL, On continuous solutions of a functional equation, Metrika, 22 (1970), 31-40.
- [15] C. E. SHANNON, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379—423.
- [16] O. ZARISKI and P. SAMUEL, Commutative algebra, D. Van Nostrand, (Princeton, 1958).

DEPARTMENT OF MATHEMATICS LAJOS KOSSUTH UNIVERSITY H—4010 DEBRECEN, PF. 12 HUNGARY

(Received December 30, 1986)