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1. At the International Conference on Functional Equations and Inequalities
held at Szczawnica in Poland (June 21—27, 1987) K. LAJKO gave a survey talk
about Hosszi’s functional equation

JSx+y=xp)+1(xy) =f(x)+f(»).

The speaker mentioned numerous conditions under which this equation is equiv-
alent to Jensen’s functional equation

f[ x;y] % f(x)*;f(y) :

A great part of these results can be found in [1], [2] and [4]. Following this talk,
Z. DAROCzY raised the question: What can be said about the connection of the
inequalities corresponding to these equations supposing the solutions to be con-
tinuous? In this note we deal with this problem.

It is known (see [3]) that every continuous solution f: ]0, I[~R of Jensen’s
inequality

i 7(352) = 0

5 x, y€]0, 1[

is concave, 1.e.
() SOx+(1=2)p) = H(x)+1 = f()

holds for all x, y€]0, 1[ and 2€[0, 1]. The inequality which corresponds to Hosszi’s
equation is

) J&x+y=xy)+f(xy) = f(x)+f(»)

where f: ]0, I[-R and (3) holds for all x, y€]0, I[. Concerning Z. DAROCZY’s
question we will prove that concave functions satisfy Hossz(’s inequality (3) (Theo-
rem 1) but there exist nonconcave continuous solutions of (3).

2. For the sake of brevity, we introduce the notation

xoy =x+y—xy x,y€]J0, 1[.
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Since xoy is the weighted arithmetic mean of 1 and y with the weights x and 1—ux,
furthermore xoy=yox, we obtain that x and y lie between xy and xoy for all
x, ¥€]0, 1[. This observation is the key for the proef of our first theorem.

Theorem 1. Suppose that f: 10, 1[—~R is concave. Then f satisfies (3).
Proor. If x, y€]0, I[ then for some /Z€[0, 1] we have

x = Axy+(1—-2)(xoy)
and
Yy =xy+(xoy)—x = (1—A)xy+i(xoy).

Since f is concave we get

f(x) = 2(xy)+(1=24) f(xcy)
S) = (=2 f(xy)+ 2 (x0p).

Adding these inequalities, we obtain (3). [J

and

In our second theorem we will use the identities
(xoyy—xtoy? = 2xy(1-x)(1-y) >0
3
4) (xoy)—x?oy? = = (x+))[(x0y)*—x*0y"] and
(xop)t—xtoyt = (xy*—xty—xy*+2x2+2)%+ 3xy)[(x0y)* —x*0)?]
which hold for all x, y€]0, 1[ and can be checked by a simple computation.

. g |
162 2
f(x) = —x*+2x3—ax?

Theorem 2. If a€ is fixed then the function [ defined on 10,1{ by

is a continuous solution of (3) and f is not concave.

Proor. The inequality (3) is satisfied by f if and only if
(&) —[(xop)t—xtoyl]+2[(x0y)*—x%0)?] = a[(xoy)*—x*0)?]
for all x, y€]O, 1[. According to (4), (5) is equivalent to the inequality
(6) — x4+ xty+xy2—2x2—-2y*—3xy+3x+3y=a x,y€]0, 1[.

Applying the Taylor formula to the left hand side of (6) at the point (1/2, 1/2), (6)
can be written as

[ [

T 1 )
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Since az—?—‘z- this inequality holds for all x, y€]0, 1[ thus fis a continuous solution
of (3). On the other hand a-c-g- thus f” [%]:3—2:1 =0 which shows that f is
not concave. [J

Finally, we formulate an open problem: Suppose that f: ]0, I[—~R is Jensen-
concave (i.e. f is a solution of (1)). Does this imply that f is a solution of Hossz1’s
inequality (3)?
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