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1. There are two possible way to define the stability of an input-output system:
([1] p. 109).

a) A bounded input u produces a bounded output 7u.

b) If the bound of u is |u| and the bound of Tu is ||Tu|, then there is ¢=0
such that |Tu|<c-|lu[. Obviously, b)=>a) but not the contrary. In a “real” system
a) rgtger than b) can be verified however, for the operator-theoretic approach b) is
needed.

So, for the application of functional analysis in the theory of linear systemss
a natural problem is to find a class of linear operators when a) and b) are equiv-
alent. Hence the following question arises:

When will an everywhere defined linear operator 7" be bounded in a Banach
space?

FEINTUCH and SAEKS in their book [3] define a generalization of causal operator.
Our main result in this paper is that for every generalized causal operator T there
is a non-trivial invariant subspace p,B such that T is continuous on p,B. Next we
shall show by the method of Loy [7] that a causal and time-invariant operator
in the sense of [3] p. 119, is always continuous if the shift operators are isometries.
Finally, using a slight modification of HACKENBROCK's proofs [5], we prove that
an operator which is passive in the sense of [3] p. 196, is also causal and continuous.

2. Let T be a linear operator on a Banach space B(D(T)=B ie. T is
everywhere defined on B); A be a partially ordered set such that for every €4
there is s€A so that t<s; {p*; s€ A} be bounded linear operators on B with the
properties:

T "P’” =1 and p’p' T pmiu(s.:)

I1. p’z=0 forevery s€cA implies z=20.

Moreover, we define p,:=I—p* (I is the identity operator).
Definition 1. T is causal with respect to {p*; s€ A} if

(*) p’T = p'Tp’.

There are several forms to express causality:
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Lemma 1. The following assertions are equivalent:

a) T is causal;

b) pyB:={p,x; xcB} is an invariant subspace for every s<A;

c) if p’x=p'y then p’Tx=p°Ty.

PROOF. a)=b): If p,B is not an invariant subspace, then there is y£B such
that Tp,y¢ P,B. On the other hand, p,Tp,y€p,B by definition, and hence

Tps # pTp,
in this case.
b)=>a): If p,B is an invariant subspace, i.e. T(p,B)Sp,B, then for every x¢B
there is z€B such that
Tpsx = Psz

and so p,Tp,x=piz=p,z; hence
psTps = Tp;.

Substituting p,:=7—p* in this equality, (*) is obtained.
a)=c): If p*x=p°y and (#) is satisfied, then

P’Tx =p'Tp'x = p’Tp'y = p*Ty

and hence c¢) is obtained.
c)=>a): If p*x=40, then it follows from c) that p’Tx=#0, since T is linear.
By definition
pPPI-p)=0

P’T—p)x =0

for every s€ A and hence

for every s€ A and x€B. Hence (*) is obtained.

Lemma 2. For every s€ A, p,B is a closed subset of B.

Proor. If x,€p,B, then x, has the form p,z, and hence p,x,=piz,=p,z,=x,.
Moreover, if x,—x then p,x,—p,x. We conclude

PsX =X
and hence x€pB.
Our main result is the following

Theorem 1. If T is causal with respect to {p*; s€ A}, then there exist t¢ A and
K,=0 (common for every s€A!') such that

IP°Tp x| = Klpexl| s€d, xeB.
This will say that each operator p*T is continuous on the invariant subspace p,B.

Proor. Indirect. We suppose that for every t€A there is s€A such that
p°T is unbounded on p,B and we shall construct x,€B so that x,¢ D(T).
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The construction is the following. For #,€A4 there is 5,€A4 such that p"T is
unbounded on p, B and hence there is p, x; so that

[poxall =1 and |[p*Tp, x| > 1.

For t,=s, thereis s,€A such that p**T is unbounded on p,, B and hence there is
P, X2 so that

1
Ipoxad =1 and 9T, x> 2 (245 17, %l
moreover, fy<s, can be supposed since
1Pzl = lp°p*zl = llp*™z] for s<s,.
In the sequel the following abreviations will be used:
pi=p* 1esp. p, = py.

For any integer k>0 and f,.,=s; there is s;,, so that p*+1T is unbounded on
pi B and hence there is p,x; so that

k=1 1
Ipxxill =1, 541 >5, and ||p""'1Tpkx,,|f }?'[k+:§ EFHTP.'M“]-
Now, it is obvious that

1
Xo= 2 ?kaiﬁB

k=1

i.e. the infinite series on the right hand side is convergent.
We shall show, that for any integer N=0

ITxoll > N
and hence x,4D(T). In fact
N+1 S e 1 Ni1 N+1 s |

ITxoll = 1PY* Tl = 2 e P ' Tpexict oy P TpnXn+p" T 2 =5 P

k=1 k=N+1
Since T is causal, p¥+1p,=pV+1(I—p*)=0 for k=N+1 therefore we have

= 1 e S |

pN+ITk %'_1‘2_&1’&-"& - pN+lT& %1?P~+ll’kx& i 6

moreover

N-1 N1 N-1 1

P4 '2TP Hipx|= 2 —2r||Tkak|l-

- k=1

We conclude

=

|| N-1 ]
1Tx,l| = ETPh+1TPNx,~'+iZ; ?PN-HTkat

>

1 -1 ]
= FHPNHTPNJ‘H"—'I;; j?'i"“TkaxH =

N-1 ] =1 ]
=N+ 2 5 ITonl) - 3 5 1Tpsd = N.
k=1 k=1
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From [2] I1.2.7 and from the properties I and II for {p*; s€ A} we get the
following

Corollary. If T is causal with respect to {p*; sc A} (D(T)=B!), then there
exist t€A such that T is a continuous operator on the invariant subspace p,B.

Remarks. 1. According to Lemmas 1 and 2, if T is causal, then there are in-
finitely many closed invariant subspaces p;B of T such that

psB < p,B

for every t€A. So, this is the condition which implies that there is an invariant
subspace p,B#= {0} such that the restriction T to p,B is continuous.

I1. There i1s another version of the above results. Define
Ixls:= llpsxll s€A; x€B

and let B, be the completion of B via the locally convex topology generated by the
seminorms { -||,: s€A4}). Then the Corollary tells us that for a causal operator T
mapping B into B, there is 1€ 4, such that T is bounded (and hence continuous)
with respect to the seminorm | .||, since, by the proof of Theorem 1, if this is not
the case, then there is x,¢B such that

Tx,¢B but Tx,£B,.

ITI. There is an obvious closed connection between the extended space B, of
[3] p. 173—180 and our completion B,. Moreover, by Definition 13 of [3] p. 179,
the operator T is stable if there is M =0 such that

ITx|ls = M|x||, s€A; x€B.
If T is a causal operator on B, then
ITx|, = M|x|, x€B

is automatically satisfied for ar least one s€ A. (See also the Corollary of Theo-
rem 2 in the next section.)

3. In this section, let A be a partially ordered group and for s, 1€ A we define
g5
if s—t=0 where 0 is the unit in 4 moreover
A= {s: s€A, s>0}.
Definition 2. The operator U, (s€A) is called shift-operator if
U =Usp; teA.
In the next, we suppose the existence of these shift operators {U,; 1€ A} in B.
Definition 3. The operator T is called shift-invariant or time-invariant if

TU,=U,T s€A.



On the continuity of causal operators 195

Now we consider an inductive limit topology in B. The sequence {x,} is called
convergent and x,—x if there exists s such that {x,}Jcp,B and x€p,B so that
X,—~x in the seminorm | - |,.

Remark. It is easy to check that the locally convex topology generated by
the seminorms | -|;; €A is weaker than the inductive limit topology above con-
sidered.

Our main object in this section is to show that shift-invariant causal operators
are continuous in the inductive limit topology. First we give examples for the structure
described above.

Example 1. If B is any Banach space of time-functions, i.e. functions on the
real line, p* is the truncation operator

X fir) if t=3
rra= {0 elsewhere,

and U, is the right shift by s on the real line then we obtain the causal resp. shift-
invariant operators in the common sense.

Example 2. [6] Let X=X(1) be a stochastic process with random variables
having finite mean and variance and let p' X(7) be the process predicted from the
part {X(1); <t} (“before ¢™). Then the transition operator T will be called causal
if from p'X(1)=p'Y (1) it follows that

TX(t)=TY(z) for <1
and
P'TX(r) = p'TY (1) for every .

Example 3. ([3] p. 8—9 and [6].) Let H=H(R) be a reproducing kernel Hil-
bert space with kernel R=R(z, 1) (7, 1€ A,) and let p* be the projection onto the
subspace generated by

{R(.,0); t=s}.

Example 4. Let B=L'(G) where G is a locally compact group and h€L'(G)
such that
{hxf; feLM(G))

is a closed subset if % is the convolution product. Let p, be the projection onto
h*B:= {h+f; f€ L*(G)} and we define h=>g if h*Bcg+B. Then the operators T
with the property

T(hxf)=h*Tf h,fcB

are causal operators with respect to {p"; he L'(G)}.

Theorem 2. If T is causal with respect to {p*; s€ A}, |U.x|=|x| for every
x€B, 1€A, and
TU, = U,T <€4,,

13*
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then for every tc A, there is M,=0 such that
1P Tpx|| = K,|p x| s€A,.
From [2] 11.2.7 and the properties 1. and II. for {p*; s€ A} we get the following

Corollary. A causal and shift-invariant operator T (D(T)=B!) is bounded (and
hence continuous) in the inductive limit topology introduced at the beginning of this
section.

THE PROOF OF THEOREM 2. Indirect. We suppose that there exists r€4, such
that p*T is unbounded on p,B. Then there is a sequence {x;}with | p,x;||=1 such that

12T = 2 (n+ 3 5 1Tponl)-

Now it is obvious that
o |
Xo = Z 2l U(Ek llsptxkeB

i.e. the infinite series on the right hand side is convergent. We shall show that for
any integer N=>0
ITxl| < N

and hence xy¢D(T) contradicting the supposition D(7T)=B. In fact

S 1
ZFP TU k- 1)sPe Xx +

-]

ITxoll = |22 Txo|| = l

1 1
+5% w7 *WTU oy -1)sPeXn +P™T Z Um 1)sPe Xal| -
k=N+1
considering the right hand side of the equality, for the first term we have
-] l N-1 l
2 =P TU(zk—l)sptxk = 2 = iTpxl;
k=1 2 k=1 2

and for the third term
2Ns > |1 U s = f
P P 2% @k-1s Pt Xk = i Z 2; P’ 'U(u—mpsxt -
k=N+1 k=N+1
since T is causal, p*¥ is bounded and
Pw'U(nk—nsP: = PM’PH(zk— 1sU(2k-1)s»
P prsu-ne = pP(I=p* @) =0 for k=N+1

since 2Ns<t+(2k—1)s in this case.
Finally, considering the second term of the right hand side of the epuality

1
EFP’N’TU(!N—I)SPIxN = 25 U(sx s P*Tpexy
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since
TU(!N—I): - U(zN-mT and P2N’U(2,\'—1)s = U(zN—x);P’
and hence

1
EFPZM TU gy -1ys P XN

1
= 5% 1P Tpxl.

We conclude that

=

ITxoll =

1 N-1 |
N Pm TUy-1)sPr Xy + kZI 53 Pms TU 3 -1)s Pr Xx

=1

1 | N-1 1] N-1 1
= s P Towl = 3 5 1Tpesl = (N+ 3 5e 7o) = 3 55 1Tp5l = N

4. In the spirit of [3], an operator T on a Hilbert space H is called passive if
Re(Tx|p'x) = 0 x€H
where {p'; 1€ A} are projection operators of H which satisfy the same conditions

as in Section 2.
First we show that a passive operator is also causal. In fact, if

B (f.8)=(TfIp'g)+(p'fITg) f gcH

then By is a positive bilinear functional and hence the Cauchy inequality

() Br(f. 8)I* = By (f.f)-Br(g, 2)

is valid. So, if p'f=#0, then B;(f,f)=0 and hence B,(f, g)=0 for every gcH
and p'Tf=6 by the definition of B;.

We conclude that p'f=60 implies p'Tf=60 and this is equivalent to the prop-
erty ¢) in Lemma 1 since T is linear.

Our main result in this section is a slight generalization of [5] p. 274—275:

Theorem 3. Every passive operator T is continuous.

Proor. Applied 11.2.7 from [2] as in the Corollary of Theorem 1, we have
only to prove that each of the operators p'T (1€ A) is bounded.
It follows from the definition of B; that

(P'Tfg) = Br(f. &)~ (P f1Te)
Br(f.f) =2Re(p'Tf1f) =0
Re (P'T/1f) = |(P'TS1S)].
To piece together the above assertions with Cauchy inequalities, particularly with (%),

we have
(P TS 18)| = 2|0 TS 1.1)[2 |(p* Tel )2+ (f1£)/2 - (Tg|Tg);

and

moreover obviously
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putting
R(f):= [P TA N2+ (FIH?
S(g):= 2|(p'Tglg)|'*+(Te|Tg)
we obtain by straightforward calculation

(* %) (P'Tf1g) = R(f)-S(g).

Now we define

Fy(g) :=?(17)—(p‘TfIg) f0;

it follows from (##) that F;(g) is bounded for every gc€H, with bound independent
of f. Hence, by the uniform boundedness principle, {|F|: f60} is bounded i.c.
there is M =0 such that

IFfl <M f86

17 Tf 1| = sup {|(P'Tf12)|; ligll = 1} = MR().
We claim that for every operator p'T there is C such that

1271l = ClfI-
Indeed, from the definition of R( f)

RO =1 TAIILIM2+1A]

1P TS = MR(f) = |p'Tf I M| f1M*+ M| f].
By completion to a full square for | p'Tf||'/* we obtain

a 2
i = (M) 2 fin

References

and hence

hence

[1] C. A. Desoer and M. ViDYsAGAR, Feedback Systems: Input Qutput Properties. Academi
Press 1975.

[2] N. Dunrorp and T. ScHwWARTZ, Linear Operators 1. Interscience Publ. 1958,

[3] A. FeinTucH and R. SAeks, Systems Theory: A Hilbert Space approach. Academic Press.
1982.

[4] E. AusrecHT and M. Nrumann, Uber die Stetigkeit von dissipativen linearen Operatoren.
Arch. Math., 31 (1978), p. 74—88,

[5] W. HAcCkenerOCK, Integraldarstellung einer Klasse dissipative linearer Operatoren. Math. Z.,
109 (1969), p. 273—287.

[6] T. KaLat and D. DuttweiLER, An RKHS approach to detection and estimation problems.
IN1. IEEE Trans. Information Theory IT—18 (1972), p. 730—745.

[7] R. J. Loy, Continuity of linear operators commuting with shifts. J. Functional Anal.,17(1974),
p. 48—60.

[8] L. MATE, Automatic continuity of shift-invariant linear operators. Vikram Math. J., 4 (1983),
p. 15—25.

[9] M. NEUMANN, Automatic continuity of linear operators. Functional Analysis: Surveys and
Recent Resalts I1. (Ed.: Bierstadt, K. D. and Fuchssteiner, B.) North Holland Publ
1980.

( Received September 22, 1987)



