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Abstract. We establish sufficient conditions under which (i) a double Norlund matrix (N, )
is stronger than a double weighted mean matrix (N, g,), (i) (N, py) is stronger than (N, g,),
(iii) (V, g ) is stronger than (C, 1, 1), the double Cesaro matrix of order (1, 1). As special cases
of (ii) we obtain sufficient conditions under which (iv) (C, 1, 1) is stronger than (N, g,.), and (v)
(N, g,%) is stronger than (C, 1, 1).
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1. Introduction

Among others, the previous works of ISHIGURO[I] and the second author,
jointly with KUTTNER [2], contain conditions under which Noérlund matrices are
stronger than weighted mean matrices generated by the same single sequence
{g.: n=0,1, ...}. In this paper we obtain analogous conditions for the double
Cesaro matrix of order (1, 1) to be stronger than double weighted mean matrices,
etc. In the proofs we cannot rely on the tools of matrix theory for summability
methods for single series. Our results are of interest not only in their own right,
but for possible application to double Fourier series and orthogonal series.

Let A=(ayunj: m, n, j,k=0, 1, ...) bea doubly infinite matrix, {s,,: m, n=0,1, ...}
a double sequence, and set

(l) !lm'l - Z Z amnjl:sjl (,"'! n= 0’ ], °°‘)
j=0k=0

where the convergence of the double series is meant in the Pringsheim sense. The
matrix A is called regular if, for each sequence {s,,} which is bounded and con-
verges to a limit s, the sequence {t,,} defined by (1) is also bounded and converges
to the same limit s, where m and n tend to infinity independently of one another
in both limits.

This paper was written while the first author was a visiting professor at the Syracuse Uni-
versity during the academic year 1986—1987.
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As is known (see [6]), necessary and sufficient conditions for a matrix 4 to be
regular are the following:

) lim 3 3 Gy =1,
0 k=0

m,n-.ﬁ -

3) Jim ._2‘ |Gpnpl =0 (k=0,1,...),
(4) 1:91, Zlamul =0 (j=0,1,..),
&) 4] = sp. ._Z; ZI gkl <2+

Either of conditions (3) and (4) implies
llm Auix =0 (j,k=0,1,..).

Let {g,4: J,k=0,1, ...} be a double sequence of positive real numbers and set
jz;Zq_,k (mn=0,1,...).

Given a double sequence {s,,}, its double Norlund and double weighted means are
defined as follows:

1 m

(6) f,m. Q Z 29«: —jon—kYjk
mn j=0k

and

(7) Upn = 7 g Z Z xS jx -

Omn j=0¥=0

The induced double Norlund and double weighted mean methods of summability
are denoted by (N, ¢u) and (N, g;,), respectively.

The double Cesaro means of order (1,1), or briefly the (C, 1, 1)-means, of a
sequence {s,,,} are defined by

]
Tmn = m+1)(n+1) !Z"”Z-m

We say that a sequence {g,} is nondecreasing if

L A @jx = Min {G;.5,05 Gjx+1)s
and nonincreasing if

dp = max {q; 5,k j,k+1)-
In the sequel, we use the notations
Am‘fﬂn =4k~ 495+1,k9
A1 = Gjx—qj,x+15
Apqdp = =951~ D1 941,041+
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2. Comparison of (N, g;;) and (N, g;,)

Given two doubly infinite matrices 4 and B and a double sequence {s,,}, de-
note by 1,,.(A4) and 1,,(B) the corresponding means defined by (1). We say that the
method of summability generated by A is stronger than the one generated by B if]
for any double sequence {s,,,}, whenever {t,,,(B)} is bounded and converges to a
limit #, {t,,(A4)} is also bounded and converges to the same limit 7 as m, n—eo,
Equivalently, the method of summability generated by B is included in the one gen-
erated by A.

We call a matrix A doubly triangular if, for all m and n,

Auujx =0 for j=m or k=>n.
Each of the matrices (N, ¢;), (N, g), and (C, 1, 1) is doubly triangular.

Lemma. Let A be a doubly triangular matrix, {q;} a double sequence of posi-
tive numbers, and t,,, and u,,, defined by (1) and (7), respectively. Then

mu ez jZ Z;bmnjkujk (mq n= Og l, ...)

where
(8) miljk Qj'k Ali
-?Jk
mnjn QJIIAIU mﬁ‘ (.} — 0’ 1’ il m_'l :
thl
Ak
bmnmk :thAUl k =0s l’ veey n—l)’
Tk
a
bmum = Qmuﬂ'
Qnn
Moreover,
(9) Z Z bmnjk = 2 2 DB jik (m9 n=0,1, “')'
Jj=0k=0 i=0k=0

Proor. Equation (7) can be solved for s;, to obtain

Sk = A!l(Qj 1L,k=31Uj—1,k- -1)-
Substituting this into (1) and performing a double Abel transformation (see,e.g.
[5]) yields
m—1 n-—1

fun = 2"', j' St Au(Q; 1L,k-14j-1,k- ) = Z Z le:ujk‘d)l

j=0k=0 9k

m—1

+ 2 Q}uujn 10 ;M" + Z kaumkdol ;' s +Qmuunm nqmmm = Z Z bmﬂtujt

Jn mk mn

where the b, are those as indicated in (3).

14 D
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To prove (9), take s;,=1 for all j and k. Then u,,=1 for all m and » and

In = 2 mejt and tan = 2 Zamnjts
j=0k=0 j=0k=0

yielding (9).

Theorem 1. If {q,} is nondecreasing, Ay;(qm-;jn-x/9x) is of constant sign,

(10) lim_—— 3 g, =0,
ma~e Oy =0

and

(11) TN SO
M= Slmn k=0

then (N, qy) is stronger than (N, qj).
Theorem 2. If {q;} is nonincreasing, Ay (Gm-;j,n-1/9) is of constant sign, and

02 nf e =L =0,

then (N, q;) is stronger than (N, q,,).

PrOOF OF THEOREM 1. We apply the Lemma to the matrices 4=(N, ¢;) and
(N, q3). In this case equations (8) take the form

Qj.lr Im=j.n—k
13 bmn ™ 4 . $
( ) 5 Qnm . ‘bk

bmnjn == an Am Qm-J.o (j= 0, ]-: :m""l;

mn Jn

TBPRE I 7 N W |

mn G mk

.3
mnmn qmn

To prove Theorem 1, it is sufficient to show that the matrix B=(bu,;) is
regular.

By (9),

m n I m n
Zzbmnjk= qu,muk‘—'l,

J=0k=0 mn j=0k=0

and (2) is satisfied.

Now we check condition (3). To this end, let k£ be fixed. We distinguish
two cases.
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Case (i): 411(@um-j,u-1/q) =0. By a single Abel transformation (with the agree-
ment, here and in the sequel, that Q_, ;=0 for any k), we get that

L 1 m—1 -
(14)  Jbpapl = meﬁ_.— 2’ ijﬁnﬁ'.a‘_".£+g Ay T0n=t l]_
A Q QJk
3 (Qa=0)-s.)dg Tactat,
Hotica an Jj=0 QJk
S 1 m=j,n—
Z Ibmnjki = _ 2 ik Qj_l.t)q—i*-—i =
s e 9k
& 1 Im— —jin—k k k+1 m
Qrm: Jg:l Qﬂc Z j’ o Qum gl."l qm—j "—k an Jgtb qm_J’"

which tends to zero as m, n—-<o, by (10).
Case (i1): 411(qm-j,u-x/9;)=0. Then, using (14),

m—1

[bmjkl S Z bmjk+bmmk S Z bmnjk+2bmnmk =
Jj=0 j=0

M3

(15)

j=0

1 m I 4
-—~[— B 00, g sk Ly f et ]
3 e qﬂ" qu

Since Ag;(Gm-j,n-x/q) =0 for each j, it follows from (10) that

& 20 Go.n-x _ 2(m+1)(k+ 1)y, n—x
b = =
Jg; I mnjkl = an mk . le o
2(k+1) = 2(k+1
= — ( ) g’ Jon=k = (le ) jg; ‘hm

which tends to zero as m, n—»ee.

Thus, we have proved (3) in either case.
The proof of (4) is similar, by using (11) instead of (10).
Proving (5), we distinguish the same two cases as above.

Case (i): 41(Gm-jn-1/90)=0. Then by,;=0, Z?_OZ:_obmﬂ=l, and
IB]=1.

Case (ii): Ay (Gn-j.0-s/91)=0. Now

m n m-=1 n-1 n=1

(16) Igl; kgo Ibmljkl = Z Z bmnjk+ Z bnm}n+ Z bnmml:+bmmu =

m n—-1
[jg; mnjn +k§ mk]

14¢



212 F. Moricz and B. E. Rhoades

Performing a single Abel transformation, by (13),

3 1 I~ Goo
17 bmu‘n= y ,,A - jo +'—‘=
( ) J'g‘; ¢ Qm J= QJ R T 9jn Gmn
L2000 Gm-joo _ 1 & Gm-jo
Q g‘ (an QJ 5 ") 9 jn Qnm J'g; q,m !;0 QJ: .
ntl = N3
mn - mn J= =
Similarly,

n—=1 n
Z brmmi: = Z bmmnk = L
k=0 k=0

Collecting (16), (17) and this together yields ||B| =3.

Proor or THEOREM 2. It is again a systematic verification of conditions (2)—(5)
for the matrix B. In the proof of Theorem 1 we have checked the fulfillment of
(2) without using any condition on the monotonicity of {g;}.

To check the fulfillment of (3), we fix k and again distinguish two cases.

Case (1): 411(gm-j.n-x/9;)=0. Then, by (15),

m m—1
2 lbmnjkl = Z bmnjk*bmmk e
j=0 j=o0

~ 0y actast_gp gy Sk ],
9 jk D mk
Since this time A4y, (¢m-j,n-1/q,,) =0 for each j, it follows from (12) that

2"" 1Byl = 20,k Go.n-k-1 _ 2(m+1)(k+1)gio
j=0 i anqm,l.-i-l. b (‘m+ l)("+ 'l)"'-"2 :
which tends to zero as m, n—c=.

Case (ii): Ayy(@m-j.n-x/q,)=0. Then, by (14) and (12),

Zm' |Byunji] =—2M' Dt =— Q Z(Qﬂ 1 Y 1 AR Gm—jon—k _
s I mn 4k

j=0 ik

1 < m—j.n—k—1
"é'_ g' ij_Qj-l.k)qu’—k; =
A 1 (k4 1) g5
m+ Dt D ZU‘H) = I

which tends to zero as m, n—+-<=, and (3) is proved in either case.

Condition (4) is proved in an analogous way.
Finally, we show that (5) is satisfied.
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Case (i): 4y1(Gm-j,n-x/q)=0. Then
m n m=1 »-—1 m—1 n—1
(18) Z 2 Ibnmjkl = Z 2 bmnjk_ 2 blmlju" 2 bmmk+bmn|n =
J=0k=0 Jj=0 k=0 Jj=0 k=0

m=—1 n—1
= I-Z[Jé’] b,,,.j,,+ké‘) ' -
Hence, by (13) and (12),

,ﬁ;glbmlé 1o [On-sn S Attt g, B 4y Tat]
i 2 [Qm ~1,n g: z::] o (qm—%]]_w“i"“

Case (ii): Ay3(Gm- j,n-1/9)=0. Then

m—1 n-1

m n m—1 n—1
(19) 2 2 |bmnjk| - Z Z brmﬂ:_' Z bmjn"' 2 bmnmk'l'bmmn — _'I+2bnu|m!
j=0k=0 j=0 k=0 i=0 K=0

whence, by (13) and (12), | B||=2qy/L.

3. Comparison of (N, p;) and (N, g;)

Let {p;:j, k=0,1, ...} be another double sequence of positive numbers and set

Z ijs (m,n=0,1,...).
Theorem 3. If {p;/q;} is nonincreasing, 4:,(pjl/q;) is of constant sign, and
m k
(20) lim .L. Pix W e .5,

1) g s 5 IR L e T
k=0

1 o
(22) sup 2 Pin ¥ Gjs <o

m,n=0 an i=0 qjn s=0

1
(23) sup —— pmk Z Qo <2,

w00 Jom =0 Gk r=0

then (N, p;) is stronger than (N, q;).
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Theorem 4. If {p;/q;} is nondecreasing, Ay, (pj/qu) is of constant sign, and

(24) lim Lmk: "“Q"'* =0 (k=0,1,...),
il g '?m.k+1P

25 lim P20 _ o (i_0.1,..),

( ) e L e qai+].n an (J )

mn=0 Ymn Pmn

then (N, p;) is stronger than (N, qy).

PrROOF OF THEOREM 3. We apply the Lemma to the weighted mean matrices
A=(N,p;) and (N, gp). So, this time the t,, are the (N, p;) means, while the
uy, are the (N, ¢;) means of the sequence {s;}. Equations (8) now take the form

@) b = gl
Brunjn = %: Am% (j=0,1,..., m—1;
Bl ?,:: Ao 2:: kO Lo pwl)
b= et

Our goal is to prove that the matrix B=(b,,;) is regular. From (9),

P T -

which is (2). To prove (3), we distinguish two cases.
Case (i): 4y,(pj/9)=0. Applying a single Abel transformation,

Z(Qﬁ& QJ' JR)AOI

uul Jj=0 qjx

2 [bmnjtl — Z bmnjk P
Jj=0 Jj=0

1 m 4 m
=720t = - 52

ik

=M»

For fixed k, this tends to zero as m, n—e<=, due to (20).
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Case (ii): 4y, (pu/q3)=0. From (15) and (27),

Jg | Dl = _;g; B unji+ 2Dk =

1 m -
= “‘?_ g (Op—0Qj-1,0)4n P +2%"k 4y P .

qjk mn Gk

Since 4y (pj/qu)=0 for each j, we have

Pik

0 Yk s

W

Ok P 2D mi 2
b =2 == § = ———
Slbupl w2 b 2 3 S, s

nM,

‘?js

which tends to zero as m, n—<o, for any fixed k, by (20).
Thus, we have proved (3) in either case.
Relation (4) can be proved in a similar way, using (21).
To prove (5) we distinguish the usual two cases.

Case (1): 411 (Pju/qi)=0. Then by, =0, so ||B|=1.

Case (ii): 45, (pu/qx)=0. By (16) and (27), while perfoiming two single Abel
transformations, we get

m n m n—=1
Z 2 Ibmnjkl — 2[2 bmnjn"' Z bmm]_'l =
J=0 k=0 Jj=0 k=0

=F 0= Pin 4 5 - Pk Pmn|
= |2 @012t 2 Ou—0us-d 22—, L]

whence by (22) and (23),

.

3 3 bl = o[ S L2 3,4 32 3 g, ] - 0.
j=0k=0 jn =

Gk r=0

ProOF OF THEOREM 4. Applying the Lemma, equations (8) again take the form
(27). We will prove again that B=(b,,;) is regular. Relation (2) is a consequence
of (9).

Now check (3). To this end, let k be fixed and distinguish two cases again.

Case (1): 4,,(pi/9,)=0. From (15) and (27),

R R e
Jé;lmnjll jé;mﬂ‘ mn

1 m *
= 'P_[Z th Q; -1, k)AGJ 2medoxz :
=0 mk
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Since this time Ay, (pu/qu)=0 for each j, we have

Zml [bnmjkl = 2 kapm.k+1
j=0

Foun G,k 41
which tends to zero as m, n—co, by (24).

Case (ii): 4;,(pi/q)=0. By (27),

m m 1 m
jé; |bnmjk| = —jg; bmnjk ‘IT" .g (ij QJ 1, x)dm =

qjk

lIA

PL é'(Q-“‘ ) PR Prre+r _ Pk +1 Dok

qj,x+1 G, k+1 Fomn

which tends to zero as m, n—<o, again by (24).

Thus, we have proved (3) in either case.

Relation (4) can be proved in an analogous manner, using (25).
Finally, we check (5).

Case (i): 4y (pulap)=0. By (18), (27), and (26),
L. m—1 n—1
2 2 |b""'ﬁ‘| =l“2[_2 b"“'.!ﬂ+ Z bmmnk] =
j=0k=0 j=0 k=0

y.

s Y > P Pja < Pk P X
=1 P [Jg; ©Qjn—Qj-1.n i Bxa) =5 I — 20,y — o
o
e~ S

Case (ii): 4,,(pj/q;)=0. By (19) and (27),

3 3 Bl = — 14 2bpy = Lm0 Zmn _ 1),
j=0x= F,

mn = mn

(-]
=

4. Comparison of (C,1,1) and (N, q;)
Since (C, 1,1) is also a weighted mean matrix, where
pip=1 and B, =m+1)(n+1) (jk,mn=0,1,..),
we can deduce the following four comparison theorems as corollaries.

Corollaryl If {qu} is nona'ecreasmg and A4y,(1/q;) is of constant sign, then
(C, 1,1) is stronger than (N, q,).

Corollary 2. If {qu} is nomncreasmg 411(1/q;) is of constant sign, and con-
dition (12) is satisfied, then (C, 1, 1) is stronger than (N, qj).
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PrROOF OF COROLLARY 1. In order to apply Theorem 3 to the weighted mean
matrices (N, py)=(C,1,1) and (N, g;), we have to check the fulfillment of con-
ditions (20)—(23). For example,

(29) R 3. 00 PATAENEE. NS, b I e
PM i=0 Gk s=0 ” (m+l)(n+l) i=0 qjk s=0 >

I - k+1

% e At e

which tends to zero as m, n—+-o, for fixed k. This is (20). Estimate (28) for k=n
also shows that

1 m P n 1 m 1 "
0<— > .= =1
= an Jg; q}n sg'ﬂ qj (m+l)(n+1) Jg(: QJI'I sgl'. qJ

which is (22).
Similarly, conditions (21) and (23) are also satisfied. Now the conclusion of
Theorem 3 in this special case and that of Corollary 1 coincide.

PrROOF OF COROLLARY 2. This time we are going to apply Theorem 4. So, we
have to verify the fulfillment of conditions (24)—(26). For example, by (12),

O _ (k+1)gu
D+ D res (DL

For fixed k, this tends to zero as m, n—~ <=, that is (24) is satisfied. Analogous esti-
mates verify (25) and (26), too.

Corollary 3. If {q;} is nonincreasing, 4,,q;, is of constant sign,

(29) lim — 2 450 =0,
Wy =00 lel Jj=0

and

(30) lim - 3 gu =0,

mon—~ee Oy K0
then (N, qy) is stronger than (C,1,1).

Corollary 4. If {q;.} is nondecreasing, 4,,q; is of constant sign, and

T Lol U SR T

b QIII.II

lim L’.H_l)ff_f:_‘i=0 (j=0,1,..),

e Lo an

- (m+1)(n+1)qum e

m,n=0 an

L

then (N, q;) is stronger than (C,1,1).



218 F. Moéricz and B. E. Rhoades

Proor or CoroLLARY 3. We will apply Theorem 3, while interchanging the role
of pjx and g,. By (12),

L $an zp,;—- Qijg':"(kﬂ)q,k.

an Jj=0 ij 5=
Since {g,.} is nonincreasing, (20) is implied by (29). Similarly, (30) implies (21).
Condition (22) becomes

1
sup ——(n+1)g;, <ee.

m,n=0 mn

Since {g;} is nonincreasing,

Qm _;Z (n+1)q;, = an .=Z é;qjk = 1,

-o
and (22) is satisfied. Again (23) is similarly proved.

PRrROOF OF COROLLARY 4. We apply Theorem 4, while interchanging ¢, for pj
and then setting p;,=1. After these modlﬁcatlons conditions (24)—(26) coincide
with the conditions occurring in Corollary 4, and the conclusion to be proved is
immediate.

5. Comparison of (N, ¢;) and (C,1,1)

In the theory of summability of single sequences, it is a well-known result (see,
e.g. [3, p. 67]) that if {g,: n=0,1,...} is a nondecreasing sequence of positive
numbers and the Norlund method (N, ¢,) is regular, then (%, g,) is stronger than
(C, 1). As our final result, we establish the corresponding analogue in the case of
double sequences.

Theorem 5. If {q;} is nondecreasing, satisfies conditions (10) and (11), and
4119k is of constant sign, then (N, q;) is stronger than (C, 1, 1).

Remark. If {q;} is nondecreasing, then conditions (10) and (11) are equivalent
to (2)—(5): i.e. the double Nérlund method (N, g;,) is regular.

ProoF. We apply the Lemma to 4=(N, ¢;) and (C, 1, 1). As a result, equa-
tions (8) for this case are

i+ 1)(k+1
(31) bm_n = _(;{—_)'(__)'AIIQM fom—ks
i+ 1)(n+1 j
Dot = Q%—)Amqm—j.o (=01 ..,m-1;
bpnmk = Wt’jm%.n—k k=0,1,..,n-1),
b _ (m41)(n+1)

mnmn T" 00~
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We will prove that B=(b,,;) is regular. By (9),
m n 1 m "
2 2bup=5—2 2 Gu-ju-r=1
f=ox=o0 mn j=0 K=0

so condition (2) is satisfied.
To prove (3), we distinguish two cases again.

Case (i): 4,,9,=0. By (31),

8 = k+1 & k+1 =
1‘-20 |bm|u| = Jé; bmm - o Jé; Ay Gjn-k = ;R ch: 9jn—k-

Since k is fixed, this tends to zero as m, n—==, due to (10).
Case (ii): 4,,9;=0. By (15) and (31),

- . k+1 -
2 |bpapl == 2 bpaji+ 2D i = [— 2 401Gjn-x+2(m+ I)Aulqﬂ.n—k] =
o j=0 Om L j=0

g 2mtLE+1) s 25t &
= QM Aqutl,n—k = Qm j‘=§; qJ.n—k'

If k is fixed, this tends to zero as m, n—<o, again due to (10).

We can check condition (4) in a similar way, while using (11) instead of (10).
It remains to verify condition (5).

Case (i): 4,93 =0. Then b,,;,=0 and |B|=1.
Case (ii): 4,,94=0. By (16),

Zm’ Zn' |bm’l1*| = 2[.2: bmnjn '{":_Z-: bmmnk] o

Jj=0 k=0
By (31),
< n+l nm 1 m n
b njn — = a = I
Likewi Jé; g an Jé; f» Qnm jé; kg'; i
1KEWISE,
n—1
Z blmlmk — I;
k=
so ||B|=3.

6. Prospects for further research

Based on the results of this paper, it remains to obtain sufficient conditions
under which

(i) (N, py) is stronger than (N, g,
(i) (N, g;,) is stronger than (N, g;,),
(iii) (C, 1, 1) is stronger than (N, q).
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Question (i) was solved formally by MoorE [4], who obtained the doubly infinite
analogue of Theorem 19 of [3]. Question (ii) is not known even in the case of single
sequences. In any of the cases, to express s, from (6) in terms of the Norlund means
t; and g is virtually impossible due to the lack of matrix techniques available
for doubly infinite matrices, and the structure of double Norlund matrices.
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