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Introduction

An ordered pair (2, %) consisting of a set Q and a collection & of subsets
of Q such that AN\B=|) C; for some finite disjoint family (C;);c; in & when-
i€l

ever A, B€¥ is called a measurable space.

A net N=((0,, 7))scr such that o,=(0,)ic;, and t,=(tu)ic;, are finite
families in & and Q, respectively, with o, being disjoint for all a€l', is called a
disjoint defining net for integration over (L, ¥).

An ordered triple (X, Y, Z) of Banach spaces, over K=R or C, equipped
with a bilinear map (x, y)—=xy from XXY into Z such that |xy|=|x||y| for all
x€X and y€Y is called a multiplication system.

For functions f from Q into X and yu from & into ¥, the limit

Jrdu=1lim 3 [ w(o.),

whenever it exists, is called the 9-integral of / with respect to p.

The above concept has been introduced in our former papers [31] and [32],
where we showed that the most important basic linearity and continuity properties
of the usual integrals remain true for this more general integral.

For a preliminary illustration, we have considered there the important par-
ticular case when Q=R and

& ={lr,sl: —e<r=s=<+e},
and N=((,, 7.))ecr such that
Oy = [2=%, (+1)2*~] and =, =i2"*

for all ac'=N and i€l,=ZN[—a2*"1, a2* .

In the present paper, to include or extend several existing integrals, we provide
a systematic list of defining nets for integration. For this, we also need the concept
of topological measurable spaces and several important division properties of those.
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The exact relationships among the corresponding net integrals, and also the
standard integrals, and the characteristic properties of the single net integrals will
not be established here. This may only be the subject of some further investigations
carried out not necessarily by the present authors.

1. Measurable spaces

Definition 1.1. A collection & of subsets of a set Q will be called a measurable
system in Q if for any A4, B€Y there exists a finite disjoint family (C;);¢; in &
such that AN\B= U Co

An ordered palr Q(F)=(Q, &) consisting of a set 2 and a measurable system
& in Q will be called a measurable space.

Remark 1.2. This definition of a measurable space is more general than the
usual ones. (See, for instance, [11, p. 73], [2, p. 35] and [14, p. 149].)

It has mainly been suggested to us by the following examples and some recent
definitions of ALIPRANTIS—BURKINSHAW [1, p. 78] and JANSSEN—VAN DER STEEN
[16, p. 98].

Example 1.3. If Q=R and
&L ={rsl: —o<r=s<+},
then Q(%) is a measurable space.

Remark 1.4. The higher dimensional case can be easily derived hence with
the help of a simple product construction for measurable spaces.

Example 1.5. If Q=R? and & is the collection of all simplexes in R? in the
sense of Weir [34, p. 87], then Q(&) is a measurable space.

Remark 1.6. Some authors (see [29] and [28], for instance) consider simplexes
to be more suitable building blocks for integration on Euclidean spaces than in-
tervals.

Example 1.7. 1f € is a lattice of subsets of a set Q and
& = {A\B: A, BE¥)
then Q(%) is a measurable space.

Remark 1.8. The above general example comes from HaLmos [11, pp. 25—26].
(See also DINCULEANU [7, p. 7] and GUNZLER [10, p. 24].)

To briefly formulate several useful properties of measurable spaces, it seems
convenient to introduce the following

Definition 1.9. Let Q(%) be a measurable space. A disjoint family (4,);c; in
& will be called an & -division of a subset 4 of Q if A=) 4,.

i€l
Moreover, a subset 4 of 2 having a finite (countable) ¥ -division will be called
finitely (countably) &-divisible.
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Theorem 1.10. If Q(%) is a measurable space and A€, then the set A\ |J A,
is finitely & -divisible for any finite family (A;);cy in &. ter

Proor. By using induction on the cardinality of 7, a similar argument as in
the proof of [1, Theorem 9.2, 1] can be applied.

Corollary 1.11. If Q(%) is a measurable space, then the set (\ A; is finitely
S -divisible for any nonvoid finite family (A)icy in &. el

Proor. Note that [ 4;=A4;\|J (4;,)\4,) for some i,c], and thus Theorem
iel icr
1.10 can be appiied.

Remark 1.12. It is a striking fact that Corollary 1.11 has been overlooked by
several authors. (See, for instance, [4, § 4], [34, p. 85] and [16, p. 96].)

Example 1.13. If Q(¥) is as in Example 1.3, then the set

[0, INU [ 1] = ﬂ [0, i~ = {0}

i=1

is not % -divisible, and thus Theorem 1.10 and Corcllary 1.11 cannot be cxtended
to countable families.

Theorem 1.14. If Q(¥) is a measurable space, then for any finite fam:iy (ADicr
in & there exists a finite -division (B));c; of U A; such that each A; is a union
of some Bj’s.

Proor. The assertion trivially holds for the void family, Suppose now that
(A)i¢y is an arbitrary family in &% for which the assertion holds, and A4;€% with
is41. Then, by Corollary 1.11 and Theorem 1.10, the sets A; NB;, B\ 4,; and

A, \.U B; have finite #-divisions (Cidiek, (DJ,),( L, and (F ,,.),.,(u, I'CSpCCthCIy
i€J
Here, the index sets K;, L, and M may clearly be choosen so that the sets

K= U {/}XK;, L= U {;}XL and M be pairwise disjoint. Now, by considering

the famlly (Ck)“gU(D,),U_U(E )mems it is clear that the assertion holds also for
the enlarged family (A4;)ie7u(,. And thus by the principle of induction the proof is
comp]ete

Remark 1.15. The above important theorem comes from BERBERIAN [2, Lemma
22.1). (See also DINCULEANU [7, Lemma 6.1] and GUNZLER [10, Lemma 1.2].)

For the reader’s convenience, we included here a more natural inductive proof
suggested by Giinzler. Note that now we cannot say anything about the cardinality
of J.

Example 1.16. If Q(%) is as in Example 1.3 and A4;=[0,i"[ for all positive
integer /, then the set |J A4; fails to have an &-division (B));., such that each

i=1
A; is the union of some B,’s, and thus Theorem 1.14 cannot be extended to countable
families.
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To check the above assertion, note that 0€ ﬂ A;, but the set ﬂ A;={0} fails
i=1
to contain an element B of & with 0€B.

Remark 1.17. In connection with Theorem 1.14, it is also worth mentioning

that if (4,);¢; is a nonvoid family in & and (B));¢, is an &-division of |J 4; such
il
that each 4, is the union of some B;’s, then each B; is necessarily contained in some A;.

Theorem 1.18. If Q(¥) is a measurable space, then for any countable family
(A,),€ 1 in &, there exists a countable S -division (B));c; of U A; such that each B;
is contained in some A;.

PrOOF. By using that I={i,};=, for some sequence (7,);>, in I whenever I+,
the argument given in the proof of [1, Theorem 9.2, 2] can be repeated.
As an immediate consequence of Theorems 1.14 and 1.18, we have:

Corollary 1.19. If Q(¥) is a measurable space, then the set U A; is finitely
(countably) & -divisible for any finite (countable) family (A));cy in 9’

For a preliminary classification of measurable spaces, it seems convenient to
introduce the following

Definition 1.20. A measurable space Q(%) will be called

(1) additive if & contains all finitely % -divisible sets;
(i1) g-additive if it is additive and & contains all countably %-divisible sub-
sets of its members;
(iii) finite (o-finite) if Q is finitely (countably) & -divisible.

Remark 1.21. The apparently very strange terminology of (ii) and (iii) is mainly
motivated by the fact that we are unwilling to consider infinite-valued measures
on 4.

By simple applications of Theorem 1.10 and Corollaries 1.11 and 1.19, one
can easily prove the next useful propositions.

Proposition 1.22. If Q(%) is an additive measurable space, then & is closed
under subtractions, finite intersections and finite unions.

Proposition 1.23. If Q(¥) is an arbitrary measymbfe space and & is the col-
lection of all finitely &-divisible subsets of Q, then Q(%) is an additive measurable space.

Proposition 1.24. An additive measurable space Q(%) is o-additive if and only if
& is closed under countable intersections.

Remark 1.25. Additive (s-additive) measurable systems are usually called rings
or clans (d-rings or d-clans).

Propositions 1.23 and 1.24 are essentially equivalent to Propositions 1.13 and
1.8 of Dinculeanu [7].

Proposition 1.26. A measurable space Q(%) is finite (o-finite) if and only if Q
is a finite (countable) union of elements of <.
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Remark 1.27. In this respect, it is also worth mentioning that an additive

measurable space Q(%) is finite if and only if Q€.
On the other hand, due to the terminology of (ii) in Definition 1.20,
a g-additive o-finite measurable space need not be finite.

2. Topological measurable spaces

Definition 2.1. An ordered triple Q(%,7)=(Q, ¥,7) consisting of a set Q,
a measurable system % in Q and a topology J on Q will be called a topological
measurable space if & and J are compatible in the sense that for each x€Q and
VeT with x€V there exists A€% such that x€A4® and AcCV.

This possibly unusual definition has mainly been suggested to us by the fol-
lowing examples.

Example 2.2. If Q(%) is as in Example 1.3 and 7 is the usual topology of £,
then Q(% 7) is a topological measurable space.

Example 2.3. If Q(%) is as in Example 1.5 and 7 is the usual topology of Q,
then Q(% ) is a topological measurable space.

Example 24. If Q(7) is a locally compact HausdorfI space, € is the collection
of all compact subsets of Q(Z7) and & is as in Example 1.7, then Q(¥ J) is a
topological measurable space.

To check this, recall that in a locally compact Hausdorff space the compact

neighbourhoods of a point form a base for its neighbourhood system [18, p. 146]

Remark 2.5. The above important example has also been considered by Bogda-
nowicz [3, p. 220].
Its particular case when (") is a discrete space will allow us to regard various

sums as particular integrals.
Some extreme examples for topological measurable spaces can also be obtained

from the next simple

Theorem 2.6. If Q(¥) is a measurable space such that Q=U%, then & is a
base for a topology T4 on Q, and Ty is the largest topology on Q such that Q(%, Ty)
is a topological measurable space.

Proor. Corollary 1.11 shows that & is a base for a topology % on Q, and
hence it is clear that & and J, are compatible in the sense of Definition 2.1.

Suppose now that 7 is another topology on @Q which is also compatible with
& If VeZ, then by Definition 2.1, for any x€V there exists 4€¥ such that
x€ACV, and thus V€J,. Consequently, TC T,.

Remark 2.7. This theorem shows that we could at once have started with
topological measurable spaces instead of the measurable ones without an essential
restriction of generality.

The appropriateness of our former definitions is also well-shown by the fol-
lowing theorem and its subsequent consequences.

Theorem 2.8. If Q(%. ) is a hereditarily Lindelof topological measurable space,
then T consists of countably &-divisible sets.

16 D



242 Gy. Szab6 and A. Sziz

ProOOF. If V€Z, then by Definition 2.1, for each x€V there exists 4.9

such that x€A4% and A,cV. Thus, in particular, we have V= |J A%. Hence,
x€EV
by the hereditary Lindel6l property of ©(7), there exists a countable family (x;);¢r

in ¥ such that V= A4%,. Thus, since 4, cV forall icl, we also have V=) 4;.
iel iel
Hence, by Corollary 1.19, it is clear that ¥ is countably &-divisible.
Corollary 2.9. If Q(¥, ) is a hereditarily Lindelof o-additive topological meas-
urable space, then ANVEY for all AcY and VeT.

Proor. If V€7, then by Theorem 2.8, ¥ has a countable &-division (4));s-
Thus, in particular, we have A=) AN A4; for any 4A€%. Hence, by Corollary 1.11

i€I
and the g-additivity of it is clear that ANVES for any A€

Corollary 2.10. If Q(%, 7) is a hereditarily Lindelof o-additive finite topolog-
ical measurable space, then TC 5.

Proor. By Remark 1,27, now we have Q¢c%. Thus, by Corollary 2.9, V=0
Nve& forall Ved.

Remark 2.11. In the proof of Theorem 2.8, we have only used that each open
subspace of Q(7) is Lindelof. However, this already implies that Q(Z") is hered-
itarily Lindelof [8, Theorem III1.3.2].

By the Lindelof theorem [8, Lemma I1.12.4] each second countable space is
hereditarily Lindelof. On the other hand, a semi-metric space is hereditarily Lin-
deldf if and only if it is separable (second countable) [8, Theorem I1.12.1, Lemma
11.12.4 and Exercise 11.12.10].

Thus, in particular, the topological measurable spaces given in Examples 2.2
and 2.3 are hereditarily Lindelof. In this respect, it is also worth mentioning that
if Q(&) is as in Example 1.3 and 7, is as in Theorem 2.6, then Q(%, ) is hered-
itarily Lindelof [8, Example 111.4] and separable, but not second countable, and
hence not semi-metrizable.

3. Divisions

Definition 3.1. Let Q(%) be a measurable space. A disjoint family o=(0});cr
in & will be called a division in 2(%). The collection of all divisions in (%) will
be denoted by 2(L, &).

A division ¢=(0,);c; in Q(%) is said to be a division of Q(¥) if Q=Ueg=
=iUIo;. The collection of all divisions of Q(%) will be denoted by 2*(2, ¥).

€

Moreover, the collections of all finite (countable) members of Z(Q, ¥) and
2*(Q, %) will be denoted by Z,(2, &) (2,(R2, &) and Z;5(Q, &) (Z5(Q, ¥)),
respectively.

Remark 3.2. Examples 1.3, 1.5 and 1.7 and the fact that we shall mainly be
interested in finite divisions explain why a division in (&) cannot at once be re-
quired to be a division of Q(¥).

Definition 3.3. For any two clements o=(0));c; and ¢=(g));c; of 2(Q, &),
we write =g if each g; is a union of some g,’s.
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In this case, we say that g is a refinement of ¢, and the relation = will be
called the natural refinement relation of 2(Q, ).

Theorem 3.4. The natural refinement relation of Z(RQ, %) is a partial order
on D(Q, ) which turns D(Q, &), DR, &), 1(Q, F) and D*(Q, &) into
directed sets.

ProoF. It is easy to check that the natural refinement relation = is a reflexive,
antisymmetric and transitive relation on 2(Q, %).

Moreover, the fact that this relation directs Z,(R, &) follows immediately
from Theorem 1.14. (Actually, Theorem 1.14 gives a common refinement 6€ 2, (R, &)
of any @, 0€2,(Q, &) with the additional property Ud=(Ua)U(Up).)

Finally, to complete the proof, note that if o=(0;);c; and @=(g;);¢s are
arbitrary members of 2%(Q, #), then by Corollary 1.11, the set o;Mg; has a
finite &-division (8;5)xex,, for any i€] and jé€J, and we may consider the family
0=(0ip: 51'61, J€J, k€K;;) which is clearly a member of 2*(Q, &) such that ¢=6
and p=0d.

Note that if in particular ¢ and ¢ belong to 23(Q, &) (21(Q, &)), then 6
also belongs to Z5(R2, &) (27 (L, &)).

To have a straightforward development hence to the topological case, we first
provide a useful reformulation of the natural refinement relation for divisions of
fixed sets.

Definition 3.5. For a=(06));;€2(8Q, &), the relation
R,=U 0;X0;
1er

will be called the equivalence relation induced by .

Proposition 3.6. If 0=(0,);c; and 0=(0));c; are members of Z(Q,F) such
that Ueo= Uy, then the following properties are equivalent:

(1) o=p;

(i1) each g; is contained in some a;;

(iii) R,CR,.

This simple proposition and the fact that R, is an open neighbourhood of
the diagonal of Q(7,) for all ¢€2*(Q, ) provide the necessary motivation for
the next

Definition 3.7. If Q(%,7) is a topological measurable space and R is a
neighbourhood of the diagonal of Q(7), then a division ¢ in Q(%) will be called
R-fine if R,CR.

Remark 3.8. Note that if in particular 7 is induced by a semi-metric d on Q,
then the relation B, is defined on 2 by

B,(x) = {y: d(x,y) = r}

is a neighbourhood of the diagonal of Q(7) for all r=0, and the B,-fineness of a
division o=(0;);¢c; in (%) means simply that

lo" = Sl]p {diam ﬂ"“}iel =r.
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Theorem 3.9. If Q(%, ) is a topological measurable space, then for any com-
pact (Lindelof) subspace Q of Q(7) and any neighbourhood R of the diagonal of
Q(T) there exists an R-fine, finite (countable) division ¢ in Q(¥) such that Qc Ug.

PrROOF. By the definition of the product topology, for each x€(Q, there exists
V.€7 such that x€V, and V. XV,c R. Moreover, by Definition 2.1, for each
X€Q, there exists A,6% such that x€A% and A.cV.. Thus, in particular, we
have Qc U A%. Now, since Q is compact (Lindeldf), there exists a finite (countable)

family (\.‘)k, in Q such that QcC U A3, and hence QC U A,,. Hence, by applying

Theorem 1.14 (1.18), we can gct a finite (countable) 9’ dmsmn 0=(0);c; of

}eJ: Ay, such that each ¢, is contained in some A, . Thus, we have QC U ¢;. More-

over, since A, CV, and ¥V, XV, cR for all i€l it is clear that R, CR

Corollary 3.10. If Q(%,7) is a compact (Lindelif) topological measurable
space, then for any neighbourhood R of the diagonal of Q(J") there exists an R-fine
finite (countable) division o of Q(%).

Corollary 3.11. A compact (Lindelof) topological measurable space Q(S,T)
is finite (o-finite).

Remark 3.12. Corollary 3.11 and the simple fact that e-compact spaces are
Lindel6f show that the topological measurable space given in Example 2.4 is Lin-
delof if and only if it is o-finite.

To briefly formulate a further useful consequence of Theorem 3.9, it seems
convenient to introduce the next

Definition 3.13. A topological measurable space will be called almost compact
(almost Lindelof) if each clement of & is contained in a compact (Lindeldf) sub-
space of Q(7).

Remark 3.14. Note that the topological measurable spaces given in Ex-
amples 2.2, 2.3 and 2.4 are almost compact, and thus the next theorem can be ap-
plied to them.

Theorem 3.15. If Q(¥, 7") is an almost compact (almost Lindelof) topological
measurable space, then for any A€Y and any neighbourhood R of the diagonal of
Q(T) there exists an R-fine finite (countable) division ¢ in Q(&) such that A= U g.

ProoF. By the assumptions, there exists a compact (Lindel6f) subspace Q of
Q(7) such that Ac Q. Morcoxer, by Theorem 3.9, there exists an R-fine, finite
(countable) division 6=(6));; in 2(%) such that Qc U o;. Thus, we have

A=1]J ANa;. On the other hand, by Corollary 1.11, for CdCh :EI there exists a finite
icl

& -division ()¢ x, of ANo;. Hence, it is clear that the family o=(g: €1, kEK))
1s a division in Q(&) with the required properties.

Corollary 3.16. If Q(%, ) is an almost compact (almost Lindelif) topological
measurable space, then for any finite (countable) division o in Q(%) and any neigh-
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bourhood R of the diagonal of Q7), there exists an R-fine finite (countable) division
0 in Q(%) such that 6=¢p and Jo=Uyp.

Proor. If o=(0;);.;, then by Theorem 3.15, for each i€I, there exists an
R-fine finite (countable) division (g;));¢ s, in () such that o‘— U ;- And thus,
we can define o=(g;;: i€, j€J).

4. Tagged divisions

Definition 4.1. Let Q(%) be a measurable space. A family 7=(7));c; in Q
will be called a tag (choice) for a division 6=(6,);; in Q(¥) (if 7,€6; whenever
o;#0). The collection of all tags (choices) for ¢ will be denoted by F,(0) (€,(0)).

An ordered pair (o,71) consisting of a division ¢ in (%) and a tag (choice)
7 for o will be called a tagged (choiced) division in Q(%). The collection of all tagged
(choiced) divisions in Q(%) will be denoted by 27 (Q, &) (2%(Q, ¥)).

Moreover, in connection with the collections 27 (2, %) and 2%(2, %) we
shall use the same kind of notation as in Definition 3.1. Thus, for instance
2,7 (2, %) (237 (2, ¥)) will denote the collection of all finite members (g, 7)
of 27 (Q,%) (such that Q= Uog).

Remark 4.2, The above definition has mainly been suggested to us by McLeod
[24, p. 17] and McShane [25, p. 14].

To include their ideas of fine tagged divisions in our more general setting, it
seems convenient to introduce the following

Definition 4.3. A relation R on a topological space Q(7) will be called a semi-
neighbourhood of the diagonal of Q(7) if x€R(x)° for all x€Q.

Remark 4.4. Recall that R is a neighbourhood of the diagonal iff (x, x)ER®
for all x€Q.

Moreover, note that the above definition is a little more general than the one
suggested by CecH [5, p. 306].

Definition 4.5. If Q(%,7) is a topological measurable space and R is a
semi-neighbourhood of the diagonal of Q(7), then a tagged division (o, 1)=
=((0)icr> (Tic1) in (&) will be called R-fine if ¢;CR(r;) for all i€l

Remark 4.6. The above crucial definition has its origin in a 1957 paper of
KurzweiL [21].
Henstock [12] working independently came to the same idea around 1960. (See
also MCSHANE [25].)
Analogously to Theorem 3.9, now we have:

Theorem 4.7. If Q(%,7) is a topological measurable space, then for any com-
pact (Lindelof) subspace Q of Q(Z) and any semi-neighbourhood R of the diagonal
of Q(7) there exists an R-fine finite (countable) tagged division (o,7) in Q(%)
such that Qc Ua and the members of t are in Q.

PrOOF. A similar argument as in the proof of Theorem 3.9 shows that there
are finite (countable) families (x;);¢; and (4));c; in Q and &, respectively, such
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that x;€ 4, R(x;) for all i€l, and Qc | 4;. Hence, by applying Theorem 1.14
icl
(1.18), we can get a finite (countable) & -division o=(0;);cy of U A; such that

0,CA;, for some i;€] whenever j€J. Now, by defining 7;=x; for all jeJ, we
can add a tag = ('L'J)Jrc ; to o such that the tagged division (o, t) have the required
properties.

Corollary 4.8. If Q(%,7) is a compact (Lindelif) topological measurable
space, then for any semi-neighbourhood R of the diagonal of Q(F) there exists an
R-fine finite (countable) tagged division (o, 1) of Q(¥).

The proof of the next theorem is also quite similar to that of Theorem 3.15.

Theorem 4.9. If Q(&, ) is an almost compact (almost Lindelof) topological
measurable space, then for any A€Y and any semi-neighbourhood R of the diagonal
of Q(T) there exists an R-fine finite (countable) tagged division (o,7) in Q(%)
such that A= Ueg.

Analogously to Corollary 3.16, now we have:

Corollary 4.10. If Q(¥,T) is an almost compact (almost Lindelof) topological
measurable space, then for any finite (countable) division ¢ in Q(%) and any semi-
neighbourhood R of the diagonal of Q(7) there exists an R-fine finite (countable)
tagged division (g,v) in Q(&) such that 6=9p and Ue=U .

Remark 4.11. In the above assertions, we can also make some restrictions
on the tags. But, unfortunately, the corresponding assertions do not, in general, hold
for choiced divisions.

In connection with choiced divisions, we can only prove an analogue of the
compatibility theorem of McLeod [24, p. 38]. For this, it seems convenient to begin
with the next useful

Lema 4.12. For any o, f, e€R with O<=e<=f—o and any semi-neighbourhood
S of the diagonal of R there are points

A== <h=ETh<bLh=.<LL 1 =T, <=

with t,=p—e such that
(ti—y, il < S(7)
forall i=1,2,...,n

ProOF. Denote by 4 the set of all points x€[«, f] for which there are points
a=ru§‘:] =L 'é"fg"-‘-fggu."‘: f,,_IET,,<IH=x

such that [t;,_,, 4[<S(7) for all i=1,2,...,n.

Since a€S(x)° and a=p, there exists r=0 such that [«, a+4r[cS(x) and
a+r=pf. Thus, a+r€A, and hence a<y=sup A=p.

Now, it remains conly to show that y=p. For this assume on the contrary
y=<p. Since y€S(y)° there exists s=0 such that Jy—s, y+s[CS(y) and y+s<p.
Moreover, since y=sup 4, there exists x€A such that y—s<ux. For this x, there
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are points t; and 1; as above. Furthermore, we can define 7,.,=7 and #,,,=y+s.
Hence, it is clear that y+s€.4, which is a contradiction.

Remark 4.13. By defining S such that f¢S(¢) for all 1=, one can at once
see that P€A does not, in general, hold. And thus the above lemma cannot be
improved.

Definition 4.14. A division ¢ in a measurable space Q(%) will be called semi-
finite if each element of & intersects only finitely many members of o.

Theorem 4.15. If Q(%,7) is as in Example 2.2, then for any semi-finite divi-
sion o of Q(¥) and any semi-neighbourhood R of the diagonal of Q(7) there exists
an R-fine semi-finite choiced division (g,v) of Q(5) such that o=p.

ProoF. Because of the semi-finiteness of ¢, we may assume that 6 =([f;—1, ,Dic 2z
such that #,_,<t, for all k€Z. Since R is a semi-neighbourhood of the diagonal,
for each k€Z, there exists r,=0 such that

Iti—ri e+nl < R(4) and 2r < min {fy—t;_y, o — 1)
Moreover, by Lemma 4.12, for each k€Z, there are points
Lt =S=Va <Su=Vie <SS =...< Sim—1 = Vin, < Sk,

With Sk"k:"tt.fl"'rk.l.l Sl.lCh that

ou = [Si-15 Sl © R(vy)

for all /=1,2,...,n,. Now, by defining

Oko = [Sk—1me_ys Sl @and 7 =1,

for all k€Z, we can form the required choiced division (o, v)=((2));css (v)jcs)
with
J={(k,D): k€Z, 1 =0, 1, ..., m}.

Corollary 4.16. If Q(¥,9) is as in Example 2.2, then for any semi-neigh-
bourhood R of the diagonal of Q(T) there exists an R-fine semi-finite choiced division

(0, V) of Q).

Proor. Defining o=([k—1, k[)icz, Theorem 4.14 can be applied.

To include a reasonable particular case of the compatibility theorem of McShane
[26, p. 28] too, it seems appropriate to introduce another special kind of tagged
divisions.

Definition 4.17. Let Q(%,7) be a topological measurable space. A family
T=(1));cr in Q will be called a semi-choice for a division 6=(0,);c; in Q(¥,T)
if 7,66; whenever o;=0. The collection of all semi-choices for ¢ will be denoted
by %ar)(0)-

An ordered pair (o, t) consisting of a division in Q(¥, ) and a semi-choice
t for ¢ will be called a semi-choiced division in Q(%, 7). The collection of all
semi-choiced divisions in Q(%, ) will be denoted by 2%(Q, &, 7).
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Moreover, in connection with the collection 2%(Q, ¥, 7) we shall use the
same kind of notation as in Definition 3.1. Thus, for instance %,4(Q, ¥.9)
(21€6(Q, &, 7)) will denote the collection of all countable members (o,7) of

2%(Q, %, T) (such that Q= Uo).
In contrast to Lemma 4.12 and Remark 4.13, now we have:

Theorem 4.18. If Q(%, 7)) is as in Example 2.2, then for any A% and any
semi-neighbourhood R of the diagonal of Q(F) there exists an R-fine finite semi-
choiced division (o,1) in Q(%,7) such that A= Ugo.

PRrOOF. Since the assertion trivially holds if 4=0, we may assume that 4=[a, [
with a<f. Now, since SE€R(fS)° there exists O<e<f—a such that [f—eg, f[C
CR(f). Moreover, by Lemma 4.12, there are points

A=h=E=h<h=Sh<h=.<lh, =T,<L,=§

with #,>p—¢ such that [t,_,, ;[ R(z) for all i=1,2, ..., n. Hence, by defining

Tar1=Iln11=P, 43 =
o = ([t;-1, t)i31 and 7= (7)1,

we can form the required semi-choiced division (g, 7).
As an immediate consequence of this theorem, we can state

Corollary 4.19. If Q(%,7) is as in Example 2.2, then for any semi-finite
(countable) division o in Q(%) and any semi-neighbourhood R of the diagonal of
Q(T) there exists an R-fine semi-finite (countable) semi-choiced division (o, v) in
Q, T) such that =9 and Ue=Up.

Remark 4.20. Theorems 3.9, 3.15, 4.7, 4.9, 4.15 and 4.18 and their corollaries
strongly suggest the use of measurable relator spaces instead of the measurable
topological ones.

However, at the present, we could not do this generalization since the second
author’s results on relator spaces have not been published up till now and are still
far from being complete.

5. Defining nets for integration

Example 5.1. Let Q(%) be a measurable space and I'=2,¢(Q, &). For any
two elements (o, 7) and (g, v) of I', define (o, 7)=(o, v) if 6=p. Then the identity
function of I' is a defining net for integration over Q(%).

The fact that I' is a directed set follows at once from Theorem 3.4. Moreover,
it is clear that I' 0.

Remark 5.2. The above natural net of integration can lead to powerful integra-
tions only in the g-additive cases.

To obtain powerful integrations also in the more general cases much more
difficult constructions are needed.
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Definition 5.3. A function ¢ defined on a subcollection & of Z2(Q, %) will
be called a finitator on & if ¢ (o) is a finite subset of I, for any o=(6);¢; €6

The collection of all finitators ¢ on & will be denoted by @(&), and for any
two @, YeP(8), we write o=y if ¢(e)cy (o) for all g€d.

Remark 5.4. Note that the above pointwise partial order turns @(&) into a
directed set, since for any ¢, y€ ®(&) the function ¢V defined on & by

(Vi) (o) = @(a)UY (o)
also belongs to @(&).

Example 5.5. Let Q(%) be a o-finite measurable space and
I = {(0,7, 9): (6, )€216(2, &), €D (27(Q, £))}.
For any two elements (e, 7, ) and (o, v,¥) of I', define

(o1, 0)=(e,vY) if o=¢ and o=y.
Then the function M defined on I" by

N(a, 7, 0) = ((6ic p(o)» (Tico(e))

is a defining net for integration over Q(%)
The fact that I' is a directed set is immediate from Theorem 3.4 and Remark 5.4.
Moreover, the o-finiteness of 2(%) guarantees that I' 0.

Remark 5.6. The above net of integration has mainly been suggested to us by
Sion [30, p. 17].
The main motivation for it is that, by the iterated limit theorem [18, p. 69],

the single limit
[fdu=_lim 2 S u()

(o,r,@)ET ;

is always equal to the iterated limit

lim =

. r)eg.@,iZ’ S u(o) = llrr;w }gp Z; Sft)u(o))
Jis finjte ’

whenever this latter exists, and thus the use of infinite approximating sums can be

avoided.

Example 5.7. Let Q(%,7) be an almost compact topological measurable
space, and denote by Z the collection of all neighbourhoods (semi-neighbourhoods)
of the diagonal of Q(Z). Moreover, let I' be the collection of all ordered triples
(0,7, R) such that (o,7) belongs to 2,4(2, &) (2,7 (2, ¥)), RER and ¢ ((0, 7))
is R-fine. For any two elements (¢,7, R) and (g,v,S) of I', define (0,7, R)=
=(p,v,S) if 6=p and R=S in the sense that SCR. Then, the function N
defined on I" by

R(o, 1, R) =(0,7)

is a defining net for integration over Q(%).
To check that I' is a directed set note that R, S€EZ implies RNSEZX, and
apply Theorem 3.4 and Corollary 3.16 (4.10). The fact that I'#@ is obvious.
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Example 5.8. Let Q(¥,7) be a Lindeldf topological measurable space, and
denote by # the collection of all neighbourhoods (semi-neighbourhoods) of the
diagonal of Q(J). Moreover, let I' be the collection of all ordered quadruples
(6,7, R, ) such that (o,7) belongs to Z74(2, %) (217 (2, %)), RER,
0Ed(27(Q, #)) and ¢ ((0, 7)) is R-fine. For any two elements (o, 7, R, ¢) and
(e, v, S,¥) of I, define (0,7, R, ¢)=(0,v,S,¥) if 6=p, R=S and ¢ =\, where
R=S means again SCR. Then, the function N defined on I' by

Sﬂ(o', T, R9 (0) — ((Ui)ii @.a) (Ti)iwaa))

is a defining net for integration over Q(%).
The fact that I' is a directed set follows again from Theorem 3.4 and Corol-
lary 3.16 (4.10) Moreover, Corollary 3.10 (4.8) shows that I'=0.

Remark 5.9. The above nets of integration may lead to significant improve-
ments of the classical refinement and norm integrals [15, p. 27] and can include
the absolutely convergent gauge integral of MCSHANE [25] which is a Riemann-type
equivalent of the classical Lebesgue integral.

However, they seem still to be unsuitable to obtain the non-absolutely con-
vergent gauge integral of KurzwelL [21] and HEeNnsTocCK [12] which is a common,
Riemann-type, generalization of the classical Lebesgue and calculus integrals. There-
fore, we also need the following particular defining nets for integration whose gen-
eralized forms should also be established.

Example 5.10. Let Q(%,7) be as in Example 2.2, and denote by R the col-
lection of all semi-neighbourhoods of the diagonal of Q(77). Moreover, let I' be
the collection of all ordered triples (o, 1, R) such that (o, 1)€2,¢(L2, ¥, T),
REA and (o, 1) is R-fine. For any two elements (0,7, R) and (o,v,S) of I,
define (6,7, R)=(p.v,S) If 6=p and R=S. Then, the function N defined on
I by

N(o, 1, R) = (0, 1)

is a defining net for integration over Q(%).
To check that I' is a directed set, now Theorem 3.4 and Corollary 4.19 can be
applied. The fact that I'=#f is obvious.

Remark 5.11. A few properties of the integral defined by the above simple,
but powerful net of integration has been established by GuLYAs [9].

For instance, the fundamental theorem of the calculus holds for this net integral
without the assumption of the integrability of the derivative.

Example 5.12. Let Q(%,J) be as in Example 2.2, and denote by Z the col-
lection of all semi-neighbourhoods of the diagonal of Q(Z7). Moreover, let I' be
the collection of all ordered quadruples (o, 7, R, ) such that (o, 1) belongs to
2762, %,7) (21€(R, %)), RER and @c®(2{(Q, %)) such that (s,7) is
R-fine (and semi-finite). For any two elements (o, 7, R, @) and (o, v, S,¥) of I',
define (0,7, R, @)=(¢,v,S,¥) if 6=p, R=S and ¢=y. Then the function N

fined on I' by
N(o, 7, R, @) = ((O'i)ie ota)s (Tie w(a’))

is a defining net for integration over Q(%).
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The fact that I' is a directed set follows now from Theorem 3.4 and Corollary 4.19
(Theorem 4.15). Moreover, Corollary 4.16 shows that I' #0.

The nets of integration listed in this section strongly suggest the investigation
of the following

Problems. (1) What are the exact relationships among the corresponding net
integrals?

(2) Which are the main characteristic properties of the most important net
integrals?

(3) How are these net integrals related to the standard integrals?

Finally, we remark that it is also possible to construct some useful defining
nets for integration with the help of a fixed mcasure.

Acknowledgement. The authors are indebted to Antal Jirai, the referee, for
his valuable suggestions.

Added in proof. Meantime, we learned that B. RIECAN [On the Kurzweil in-
tegral in compact topological spaces, Radovi Mat. 2 (1986) 151—163] and S. I.
AumeD and W. F. Prerrer [A Riemann integral in a locally compact Hausdorff
space, J. Austral. Math. Soc. 41 (1986), 115—137] had also arrived at similar
ideas.
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