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1. Let 1<¢<2 and L:= i’-{—}ln—-—_;l For every x€[0, L] let
n=]1 =
n—1
1 Ta® 1 oy
i q q"
(1.1) £al(X):= e 4
0 o ¥ Iq‘ +—=>x
im=1

be defined by induction on 7. Then we have (see [1], [2], [3])
= g,(x)
1.2 - L
(1.2) x El 7

and we call the representation (1.2) the regular expansion of x. By the definition (1.1),
if n€N such that ¢,(x)=0, then

s &x), 1 o &(x)
At x=
.-g; g 4 gx q
whence
1 = gl(x)
1.3 AL b i se A
(_ ‘ : q = i=§-l q
Since 1=<L, the expansion
(1.4) T L
1 e ¢
exists. If ¢,(1)=1 for infinitely many »n, then let
(1.5) l,'=8,(1) (n€EN).

If ¢,(1)=1 holds only for finitely many », then let s>1 be the largest index for
which g,(1)=1. Then &,(1)=0 for every n=s. In this case let

[ {e;(l) if n=ks+i (1=i=s-1,k=0,1,...)

(1.6) 0 It neker (k=1,2.)
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It follows from (1.4), (1.6) that
(1.7) faly Fus
n=1

|~

where /,=1 for infinitely many n. We call the right-hand side of (1.7) the infinite
expansion of the number 1.

The number x€[0, L] is called wniquely determined if there exists only one
sequence ¢&,€ {0, 1} (n€N) for which

(1.8) x=3

&,
7
Remark. The numbers 0, L are always uniquely determined.

Let a,cR and 3 |a,/<<=. Then we call the function

n=1

(1.9) F(x)= é‘:a,,(x)-a,, (x€[o0, L])

additive, where ¢,(x) stands for the digits 0, 1 in the regular expansion of x.
The function F: [0, L]—R is called completely additive, if

(1.10) F[fi] = faF[;l;]

n=1 n=]1

holds for every sequence ¢,€ {0, 1} (n€N). By the definition of additive functions
a completely additive function is additive. In our investigations we use the following
result proved in [4].

Theorem 1.1. If F: [0, L]~R is a completely additive function and F(x)=0
holds for all x€[0, L] then there exists a€R such that F(x)=o-x for all x€[0, L].

In this paper we will prove that a completely additive function is linear.

2. Let 1<=g<2 and L:= Z“'-l—-—-q; For every k=1, k€N denote by
n=1 i
¢* (k) the unique number in the interval (1, 2) for which

LI |
@.1) L= 35—

holds. The following theorem has been proved in [1].

Theorem 2.1. Let 1<q=q*(2) and let F: [0, L]-R be a completely additive
Sfunction. Then there exists an a€R such that F(x)=o-Xx (xE[O, L)).

We will prove the following theorems.

Theorem 2.2. Let g=q*(k) for some fixed number k=2, keéN. Let F: [0, L]-R
be a completely additive function. Then there exists an a€R such that F(x)=a-x
for all x€[0, L].
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Proor. Let
22) F*(x) = F(o)— LB X

L

for every x€[0, L]. Then F* is a completely additive function and F*(0)=F*(L)=0.

Let a,:=F*[q],,] (n€N). Then

(2.3) Sla <=, 3 a,=0.
n=1 n=1
By g=q"(k)
k
24) 1= >
i=1 4
consequently for every n€N
1 1
qn — .é; qn+l
Since F* is completely additive we have for every n€EN
k
a, = Z Ay
i=1
and
k
Ay = = Ayi1+i-
By these
Api17 Gy = Auij1— Aps1
namely
(2'5) an+k+1_2 ryy1ta, = 0
holds for every n€N.
Let
(2.6) D= J a2
i—1

Then if |z]=1 the power series f(z) is convergent, and f(1)=/(0)=0. Multiply
the equality (2.5) by z"t*+! (n=1,2,...) and sum up for n. Then by (2.6) we have
f(2)-(Z**1=2-2*+1) = 3’1 a;-z*—2.z"1.q,.

But f(1)=f(0)=0 so e
(2.7) (@) (122" 4+1) = z-(z—1) - Q4-1(2)
where |z|=1, and the degree of the polynomial Oy _, (z) is not greater than k—1. Let

p(2)= Z**1+1, g(2)=-2-2%
By k=3
> [g(2)| > p(2)] >0
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if |z]=1,1. Hence, by the theorem of Rouche the functions p+g,g have the
same number of zeros on the disk |z|<1,1. Butif 1<|z]<1,1 then

|p(2)+g(2)] = 0.

As the function g has k roots on the closed disc |z] =1, the function p+g has
exactly k roots on it. Thus, by (2.6) the polynomial Q,_,(z) has k roots, but in this
case Q,_,(z)=0. That is f(z)=0, (|z]=1) hence

(2.8) a,=0
for every n€N. So we have

1 FIL) 1
G F(q"] =_£f_,_)' q
for every n€N. That is by c:= Ff‘)
(2.10) Fl)micsx

for all x€[0,L]. O
Theorem 2.3. Let ¢*(2)<g<2 be a fixed number for which

o 1
2.11 1#—4 o
(2.11) _ =
holds for every n=2, neN. Moreover let F: [0, L]-R (L:: _‘}nl_= = 1 : ] be
ll-l

a completely additive function defined by the sequence a,cR, ( Z |@,| <<=). Then
F does not change sign. s

Proor. Indirect. Suppose that F changes sign, and let

(2.12) P:= {n|neEN, a, > 0}.
Then P#N, P#0. Let
@.13) 3 zl
cr q"
(2.14) 328
3 m(P f}"'

So x, ye(0, L) and these numbers are uniquely determined (see in [1]). Thus the
regular expansions of x, y are just the right-hand sides of (2.13), (2.14). Moreover
the sets N\ P, P contain infinitely many numbers.

Denote by n,¢N that unique number for which

R 1 A | 1
2.15 —_—m e} L —] —_— ...
=) > " ke
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holds, then by ¢*(2)<g, and (2.11) this number exists and n,=3. Hence we have

7. 3 1 = A
2.16 l=—F—+..+—7 —
(2.16) LT +q,,‘,_1+‘=§+1 -

where /; denotes the digits 0, 1 in the infinite expansion of the number 1.
Let

(2.17) t:= min {n|n€N, n > ny, n¢ P, n+1€P}.
Then by (1.3), (2.13), (2.14), we have
1 1
2.18 —_———
( ) n>t,nEP q” 9"
1 1
2.19 —
( ) m>t+1l,mépP q"’ X qﬂ-l
We distinguish the following cases:
1 = l;
2.20 A ey =
( ) n>=t,nc P q" iwg—l q'_""'“
1 B /
2.21 II. — -
=N ..:-:.Zn'er - isg«u ‘I"""H
l oo
2.2 II1. —_—
( ) n:-:za'er q" - i=m.2-r-l q- ""H

It is easy to see that there are no other cases.
In the case 1. by (2.16), (2.20) we have

1 1 1
g R gl it | =

(2.23)

Hence, since F is completely additive

1 1
[q“"""’l g "'.,,,2,,€,? L P
that is
Gipg = a:—no+l+'" +a;-1+ IZEPQ"
n=t,n
and by the definition of the set P we have
(2.24) By ™ By ngirtooetiys

Now we consider the following number

1 1 1
(2.25) x:=F;_'f+...+F+—q;+

1
m:-l+%|m$l' q"' :
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Then x€[0, L] and by (2.15)
1

2.26 —_— < X.
( ) qr—nn

That is, by (1.3) the regular expansion of x, (g,(x)) is different from the right-hand
side of (2.25). Moreover, by t+1€P, (2.19), (2.20), (2.16) we have

1 1 1 1 1 1
At
whence
1 Al T ]
2.27 =— e,
o i +i—§1 q'

By the definition of the set P, and since F is completely additive we have

F(X)—ﬂt uu+ Z 8,-(X) a,-ha, no+l+ +ﬂ, 1+ﬁ'+ Z amé

i=t+1 lll3‘f+1,ﬂl(lp

= Gpgrrte Ot a+ Y &(x)-a;.

. i=t+1
That is
a'._". § a,_m+1+...+a,_1+a,

and, by 4P a,=0, so we have

(2.28) Oy = Oy pi1t vt Gy

which contradicts (2.24).
In the case II. we first consider the following number

1 T 1
2.29 o, gt o
(2.29) X et + .. q,_l +— 3 +">§€P 7
By (2.15)
(2.30) ?f_. g

that is, by (1.3) the regular expansion of x, (g,(x)) is different from the right-hand
side of (2.29). Moreover, by (2.21), (2.16) we have

R A s T .
LR S i BN b " o B 8

e ql'—l'lu+l

Consequently
(2.31) X = ——
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Hence we have

[ Zl g(x)-a,=_p1+...+ &G +a+ 22 a,=

=g n>=t,ncP

= Qepgirt ot @G+ a,+ 2 &(x) - a;,

i=t+1

(2.32) Oy =E O 11t + 01+ @,
Now we consider the following number

1 1 1 1
233 = =) —.
( ) 4 q'_'“-l Q‘_ m:-t«}%,m(r q"
By (2.15)

1

(2.34)

rach

that is, by (1.3) the regular expansion of y, (¢,())) is different from the right-hand
side of (2.33). Moreover, by t+1€P, (2.19), (2.21), (2.16) we have

1 1

1
b Sy a1 e B v, W o
v "Rkt " 4 nn-tzn;?qn

1 1 1 oo . 1
< gttt B e T

and by (2.15) we have
1 1

1 S &(y)
2.35 o + —
=) & g 1-=:2+'1 q' & @™  arriimir g

Hence by the definition (1.1) there exist k€N such that &, ,(»)=1 and f+k€EP.
So we have

al—n.;+ Z 5;(}7)'-‘-7.' = a:—u.,+l.+'"+a:—l+al+ 2 am"'
i=t+1 m=>=t+1,m¢P

- a'_”n+]_+...+a'_1+ag+ 2 al(y)‘ab

i=t+1
(2.36) R NP DR e B

which contradicts (2.32).
In the case II1. we first consider the following number

I I 1
237 TIENE ST e 2.5
( ) * q'_n°+l * G q‘-'l +n>-t.n£P q"
By (2.16), (2.22)

(2.39) -quT. <x,

I g
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that is, by (1.3) the regular expansion of x, (g,(x)) is different from the right-hand
side of (2.37): Furthermore, by (2.15), (2.18)

1 1 1
e g vl gy
q‘ n:-l%;? q“ i Q' q‘
Consequently
1 2 &(x)
2.39 = L
(5  fikid +i-§1 q

and there exists k€N such that g,(x)=0 and r+k€P, whence

Gy —po + 2 g(x):-a=a_p11t+...+aq_ 1+ 3 a,>

i=t+1 n>t,nEP

= a:-u.,+1+---+ar-1+i 2 &(x)-a;.

i1
(2.40) Atpg = p—pgt1+ oo Ty
Now consider the following number

1 1 1 1

2.41 LS MR R S o
( ) & g i " s " q +m>:+1.m(? q"
By (2.15)
(2.42) :

ol

that is, by (1.3) the regular expansion of y, (&,()) is different from the right-hand
side of (2.41). Moreover, by (2.15), (2.19) and n,=3 we have

O T N o I A G, P
q(—ng ql m>|+1.m{PqM ql“-lrn qt I‘+l ql—!lo -1"

Thus
(2.43) y= q,_,.,, + Z

i=t

and so we have

a,_,,o+g"ai(y)-a,-=a,_,,,+,+...+a,_,+a,+ S a,=

m>t+1,mé¢ P

= Qg1+t +a+ 3 g(y)-a;,
i=t+1
Aty =< a,_,,nﬂ—t-...+a,_1+a,-(l—a,(y))
but #¢ P because a,=0 hence we have

(2.44) Aoy = Opepys1t oo TGy
which contradicts (2.40).
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So we have a contradiction in each case. Our proof is complete. O
Corollary. By Theorem 1.1 in this case the completely additive function is linear.

By Theorem 2.1, Theorem 2.2 and the Corollary we have

Theorem 2.3. Let 1<=g<2, L:= 3 ql.. =% and let F: [0, L]=-R be a com-
n=1 .

pletely additive function. Then there exists an a€R such that F(x)=o-x for all

x€[0, L].
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