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Associativity equation revisited
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Abstract. We present an alternative way to find the general solution of the asso-
ciativity equation on connected and unlimited totally ordered sets that are representable
by utility functions.

1. Introduction

Let X be a nonempty set. A map F : X × X → X is a solution
of the associativity equation if it verifies F (F (x, y), z) = F (x, F (y, z)) for
every x, y, z ∈ X, so defining on X an algebraic structure of semigroup if
we interpret F as a binary operation “+”, just writing x + y = F (x, y),
(x, y ∈ X).

A crucial question is to compare the semigroups so obtained to well-
known semigroups, as for instance the additive real line (R,+), looking for
homomorphisms u : X → R such that u(F (x, y)) = u(x)+u(y), (x, y ∈ X).
In the particular case in which the set X is endowed with a total ordering
“-”, it is natural to look for utility homomorphisms into the additive real
line endowed with its natural ordering “≤”, that is, u : (X, -) → (R,≤)
such that u(F (x, y)) = u(x) + u(y) and also x - y ⇐⇒ u(x) ≤ u(y),
(x, y ∈ X).
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In classical works the general solution of the associative equation was
studied for maps F : I × I → I, where I is a proper interval of the real
line. (The original ideas appeared in Aczél [1] and Tamari [2], and were
extended in Clifford [3] and Ling [4]). The key result in this approach
is the following, and appears, e.g., in Aczél [5], p. 107, or else in Craigen
and Páles [6].

Theorem 1. Let I be a proper interval of the real line and F :I×I → I
a continuous and associative function that is cancellative (i.e.: F (x, z) =
F (y, z) ⇐⇒ x = y ⇐⇒ F (z, x) = F (z, y), (x, y, z ∈ I)). Then there
exists a continuous and strictly monotonic function φ : J → I such that
F (x, y) = φ(φ−1(x) + φ−1(y)), x, y ∈ I where J is an interval of the real
line closed for usual addition.

Remark 1. (a) Theorem 1 means, in particular, that I can be given
through F a structure of semigroup, which, in addition, is representable on
the additive real line through an additive utility function (namely: φ−1).
In this paper we shall introduce an alternative proof of this fact by ex-
tending Aczél’s approach, since we do not need to start with intervals
of the real line. We shall also prove that the possibility of defining a
structure of additively representable semigroup is inherent to connected
totally ordered sets. Actually: “Every totally ordered set that is connected
as regards the order topology and representable by a utility function, can
be endowed with a structure of topological totally ordered semigroup that
is cancellative”. Moreover, the converse is also true: “Every topological
totally ordered semigroup that is connected and cancellative can be rep-
resented through a continuous additive utility function”. This last result
essentially appears, without proof, in Clifford [3] (comment just before
Theorem 7 on p. 313).

(b) Roughly speaking, if we consider the operation “F” in the state-
ment of Theorem 1 as being analogous to the multiplication of positive
reals, then in his original solution in 1948, Aczél constructed the expo-
nential function. The shorter proof provided by Craigen and Páles [6],
worked with the logarithm function instead. However, in both works the
authors start from intervals of the real line.

2. Preliminaries

Let X be a set. Let - be a total order defined on X (i.e.: - is an
antisymmetric transitive and complete binary relation). Associated to -
we define the strict preference relation ≺ as: x ≺ y ⇐⇒ ¬{y - x} (x, y ∈
X), and the indifference relation ∼ is given by: x ∼ y ⇐⇒ {x - y} ∧
{ y - x}. Given x, y ∈ X we shall denote: (x, y) = {z ∈ X : x ≺ z ≺ y};



Associativity equation revisited 135

[x, y] = {z ∈ X : x - z - y}; (←, x) = {z ∈ X : z ≺ x} and (x,→) = {z ∈
X : x ≺ z}.

On a totally ordered set (X, -) we shall consider the order topology θ
of X, which has the following subbasis: S = {(←, x), (y,→) : x, y ∈ X}.
This topology θ is Hausdorff.

The total order - is said to be:
(i) unlimited if either there is no a ∈ X such that a - x, (x ∈ X), or

else there is no b ∈ X such that x - b, (x ∈ X),
(ii) perfectly separable if there exists a countable subset D ⊆ X such

that, for every x, y ∈ X with x ≺ y, there exists d ∈ [x, y]∩D. The subset
D is said to be order-dense in X;

(iii) representable by a utility function if there exists a real function
u : X −→ R such that x - y ⇐⇒ u(x) ≤ u(y) (x, y ∈ X). If, in addition,
there exists a utility function u that is continuous as regards the order
topology θ on X and the usual Euclidean topology τ on R, (X, -) is said
to be continuously representable.

It is well-known that: “A totally ordered set (X, -) is continuously
representable if and only if it is perfectly separable.” (See, e.g., Ch. 4 in
Bridges and Mehta [7].)

A semigroup (S, +) is a nonempty set S endowed with an associative
binary operation which we shall denote by “+”.

A semigroup S with a null element e such that x + e = x = e + x for
every x ∈ S is said to be a monoid . If each element x in a monoid S has
a converse −x such that x + (−x) = (−x) + x = e then S is said to be a
group.

A semigroup (S, +) endowed with a total ordering - is said to be a
totally ordered semigroup. If + : S × S → S is continuous as regards the
topology θ, S is said to be a topological totally ordered semigroup.

A totally ordered semigroup (S, +, -) is called translation-invariant
if x - y ⇐⇒ x + z - y + z ⇐⇒ z + x - z + y for every x, y, z ∈ S. (In
particular, a translation-invariant semigroup is always cancellative, i.e.:
x = y ⇐⇒ x + z = y + z ⇐⇒ z + x = z + y for every x, y, z ∈ S).

Given a totally ordered semigroup (S, +, -), an element x ∈ S is
said to be positive, (respectively: negative) if x ≺ x + x, (respectively:
if x + x ≺ x). (Notice that when (S, +,-) is translation-invariant, an
element x ∈ S is positive, (respectively: negative) if and only if y ≺ x + y,
(respectively: x + y ≺ y) for every y ∈ S.)

The subset of all the positive elements, (respectively: negative ele-
ments) in S constitutes the positive cone, (respectively: the negative cone)
of S, which we shall denote by S+, (respectively: by S−). When (S, +, -)
is translation-invariant, the positive and negative cones are indeed semi-
groups.
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A totally ordered semigroup (S,+, -) is said to be:
(i) positive, (respectively: negative) if it only contains positive ele-

ments, (respectively: negative elements),
(ii) additively representable if there exists a utility function u : S → R

verifying u(x + y) = u(x) + u(y), for every x, y ∈ S.

A positive semigroup (S, +,-) is said to be:
(i) Archimedean if for every x, y ∈ S with x ≺ y, there exists n ∈ N

such that y ≺ n.x, (n.x = x + n times. . . + x),
(ii) super-Archimedean if for every x, y ∈ S with x ≺ y there exists

n ∈ N such that (n + 1).x ≺ n.y.
A totally ordered semigroup (S,+, -) is said to be Archimedean, (re-

spectively: super-Archimedean) if its positive cone S+ is Archimedean,
(respectively: super-Archimedean) and also its negative cone S− is Archi-
medean, (respectively: super-Archimedean) as regards the dual order -d

defined by x -d y ⇐⇒ y - x (x, y ∈ S).
For the case of translation-invariant totally ordered semigroups, the

existence of an additive utility function was characterized in Alimov [8].
(See also Fuchs [9], pp. 230 and ff., Holman [10] or else De Miguel et
al. [11].)

A key result in this context is stated in the following

Theorem 2.
(a) The following assertions are equivalent for a positive translation-inva-

riant semigroup (S,+, -):
(i) (S, +, -) is additively representable,

(ii) (S, +, -) is super-Archimedean.
(b) In the case of translation-invariant totally ordered groups we can add

the validity of the Archimedean property as being equivalent to the
conditions in (a).

(c) A translation-invariant totally ordered semigroup (S, +, -) is addi-
tively representable if and only if its positive and negative cones are
both additively representable.

Proof. See Lemma 5, Theorem 2 and Theorem 4 in De Miguel et
al. [11]. ¤

Remark 2. With respect to the continuity of the additive utility rep-
resentations of totally ordered semigroups, it holds that in the case of a
totally ordered topological semigroup (S, +, -), every additive utility func-
tion is continuous with respect to the order topology θ on S and the usual
Euclidean topology τ on R. Moreover, a totally ordered semigroup repre-
sentable by a continous additive utility function must be topological . (See
Candeal et al. [12].)
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3. Solving the associativity equation

In order to introduce the main result, we need some preparatory lem-
mas.

Lemma 1. Let (S, +, -) be a translation-invariant totally ordered
semigroup and let a, b ∈ S be such that a + b - b + a. Then, for every
n ∈ N it holds that n.a + n.b - n.(a + b) - n.(b + a) - n.b + n.a.

Proof. It is a straigthforward exercise to prove this by induction.
This lemma has already been used in the literature. See for instance
Conrad [13], or else Fuchs [9], p. 162. ¤

Lemma 2. Let (S,+, -) be a connected and translation-invariant
topological totally ordered semigroup. Then, for every nonempty sub-
set A ⊂ S bounded from above, (respectively: from below) and for every
a ∈ S, there exists sup(a + A) and sup(a + A) = a + supA, (respectively:
there exists inf(a + A) and a + inf A = inf(a + A)).

Proof. See Clifford [14], or Fuchs [9], pp. 176–177. ¤
Lemma 3. Let (S, +, -) be a positive, connected and translation-

invariant totally ordered topological semigroup. Let a, b, x ∈ S be such
that a ≺ b and a + x - b. Then there exists an element y ∈ S such that
a + y = b. Similarly, if there exists t ∈ S such that t + a - b then we can
find an element z ∈ S such that z + a = b.

Proof. (We only prove the existence of the element y, the proof of
the existence of z being entirely analogous.) Suppose that the assertion is
not true for the elements a, b, x ∈ S with a ≺ b and a + x - b. Consider
the following subsets of S:

X = {x ∈ S; a + x ≺ b}
and

Y = {y ∈ S; b ≺ a + y}.
The subset Y is nonempty because, S being positive, we have that b ≺ a+b.
The subset X is nonempty by hypothesis. Therefore {X, Y } is a partition
of S. By translation-invariance, it follows that x ≺ y for every x ∈ X
and y ∈ Y . Thus X is bounded from above, and Y is bounded from
below, so by connectedness, there exist sup X, inf Y , and sup X - inf Y .
Let us prove that supX = inf Y : Indeed, if sup X ≺ inf Y , the partition
S = {X,Y } would consist of nonempty open subsets, in contradiction
with the hypothesis of the connectedness of S. Now by Lemma 2 we have
that a + sup X = sup(a + X) and also a + inf Y = inf(a + Y ). Therefore
sup(a + X) = inf(a + Y ) = b =⇒ a + sup X = a + inf Y = b. ¤
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Lemma 4. Let (S, +, -) be a totally ordered topological semigroup
which is connected and cancellative. Then, it holds that:

(i) For every x ∈ S the maps Rx : S → S and Lx : S → S defined by
Rx(t) = t + x, Lx(t) = x + t are both monotonic.

(ii) Given a, b ∈ S with a ≺ b, either a + x ≺ b + x for every x ∈ S
or b + x ≺ a + x for every x ∈ S. Similarly, either t + a ≺ t + b for every
t ∈ S or t + b ≺ t + a for every t ∈ S.

(iii) (S,+, -) is translation-invariant.

Proof. (i) This follows from the fact that S is connected and Rx, Lx

are continuous and injective. Actually, every continuous and injective map
F : S → S must be monotonic. To see this, let us prove that given a ∈ S
either F ((a,→)) ⊆ (F (a),→), or else F (a,→) ⊆ (←, F (a)): Since (a,→)
is connected and F continuous, F (a,→) must be connected. In addition,
F (a) /∈ F (a,→) because F is injective. Therefore F (a,→) ⊆ (←, F (a)) ∪
(F (a),→). We conclude using a standard argument of connectedness.

(ii) First notice that the sets A = {x ∈ S : a + x ≺ b + x} and
B = {x ∈ S : b + x ≺ a + x} are open. Let us prove this for the set A:
If A is empty, it is trivially open, so let us assume that there exists an
element x0 ∈ A =⇒ a + x0 ≺ b + x0. Because θ is Hausdorff, we can find
neigbourhoods U, V of a + x0 and b + x0, respectively, such that u ≺ v
for every u ∈ U, v ∈ V . By continuity of “+” we can find neighbourhoods
U1, V1 of x0 such that a + U1 ⊆ U and b + V1 ⊆ V . Let W = U1 ∩ V1. W
is a neigbourhood of x0 such that a + W ⊆ U and also b + W ⊆ V . Thus
z ≺ t for every z ∈ a + W, t ∈ b + W . Thus, A must be open.

Now observe that A is disjoint from B, and A∪B = S. Therefore, by
connectedness of S, either A or else B is empty. Similarly, one of the sets
C = {x ∈ S : x + a ≺ x + b} and D = {x ∈ S : x + b ≺ x + a} must be
empty .

(iii) (This generalizes a result in Tamari [2].) Consider x, y, z ∈ X

with x ≺ y and let us show that x + z ≺ y + z. If y + z ≺ x + z, by
part (ii) it would follow that y + t ≺ x + t for every t ∈ S. In particular,
y + (z + z) ≺ x + (z + z). However, since Rz is monotonic by part (i),
y+z ≺ x+z =⇒ (x+z)+z ≺ (y+z)+z, and we arrive to a contradiction.
Similarly we could prove that z + x ≺ z + y. ¤

Lemma 5. Let (S, +, -) be a totally ordered topological semigroup
that is connected and translation-invariant. Then it is super-Archimedean,
hence additively representable.
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Proof. By Theorem 2 (c), we can assume without loss of generality
that S is positive. Let a, b ∈ S, a ≺ b and suppose that n.b ≺ (n + 1).a
for every n ∈ N. Let A = {x ∈ S; n.x ≺ (n + 1).a for every n ∈ N}. A

is nonempty because a, b ∈ A, and 2.a is an upper bound for A, so by
connectedness, there exists c = sup A. Observe that c ∈ A: If not, there
would exist n ∈ N such that (n + 1).a ≺ n.c, and since S is topological,
there would exist a neighbourhood U of c such that n.U = {n.u; u ∈ U} ⊂
((n + 1).a,→). So we would find an element m ∈ A∩U , m ≺ c, such that
n.m ∈ ((n+1).a,→). Therefore m /∈ A, which contradicts m ∈ A∩U =⇒
m ∈ A. Now since a ≺ a+c ≺ c+c and also a ≺ c+a ≺ c+c, by Lemma 3
there exist z, t ∈ S such that a+ t = z +a = 2.c. In particular c ≺ z, c ≺ t.
Consequently z, t /∈ A. Two possibilities may occur: either t - z or else
z - t. Let us assume first that t - z. Then t + a - z + a = a + t - a + z.
Since t /∈ A, there exists k ∈ N such that (k + 1).a ≺ k.t. Thus, by
Lemma 1, (2k + 1).a ≺ k.t + k.a - k.(a + t) = (2k).c. Putting i = 2k we
conclude that (i + 1).a ≺ i.c =⇒ c /∈ A. Contradiction. Assume now
that z - t =⇒ a + z - a + t = z + a - t + a. Since z /∈ A there exists
q ∈ N such that (q + 1).a ≺ q.z. Thus, again by Lemma 1, it follows that
(2q + 1).a ≺ q.a + q.z - q.(z + a) = (2q).c, and finally c /∈ A, the same
contradiction as above. ¤

We are ready to formulate the main theorem.

Theorem 3. Let (X, -) be a totally ordered set that is θ-connected
and unlimited. The following assertions are equivalent:

(i) (X, -) is perfectly separable,

(ii) (X, -) is representable through a utility function u : (X, θ)→
(R, τ),

(iii) (X, -) is representable through a continuous utility function u :
(X, θ) → (R, τ),

(iv) There exists a continuous map F : X×X → X that is associative
and cancellative (i.e.: x = y ⇐⇒ F (x, z) = F (y, z) ⇐⇒ F (z, x) =
F (z, y), (x, y, z ∈ X)),

(v) There exists a continuous map G : X×X → X that is associative,
cancellative, has a null element e ∈ X such that G(e, e) = e, and is also
commutative (i.e.: G(x, y) = G(y, x), (x, y ∈ X)) and divisible (i.e.: for
every x ∈ X and every n ∈ N, there exists a unique y ∈ X such that
n.y = x, being, by definition, 2.y = G(y, y), 3.y = G(2.y, y) and so on).
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Remark 3. Observe that the assertion (iv) states that (X, -) can be
given a suitable structure of semigroup, and the assertion v) establishes
that (X, -) can be given a suitable structure of monoid. Roughly speaking,
such assertions say that the associativity equation has good solutions on
any representable totally ordered set.

Proof of Theorem 3. We shall follow the scheme (i) ⇐⇒ (ii) ⇐⇒
(iii), (iii) =⇒ (v) =⇒ (iv) =⇒ (iii).

The implications (i) ⇐⇒ (ii) ⇐⇒ (iii) are classical results in utility
theory. See, e.g., Candeal and Induráin [15] or Ch. 4 in Bridges and
Mehta [7].

(iii) =⇒ (v): Let u : (X, -, θ) → (R,≤, τ) be a continuous util-
ity function. Since X is connected and unlimited, and u is continuous,
the range u(X) is also a connected and unlimited interval of the real
line. Actually, by eventually passing through another continuous and
strictly monotonic function from R to R, there is no loss of general-
ity in assumming that u(X) is of one of the following three types: (i)
u(X) = (−∞, 0], (ii) u(X) = [0,∞), (iii) u(X) = R. On such intervals,
the order topology θ and the induced Euclidean topology τ coincide, so
u−1 : (u(X), τ) → (X, θ) is an homeomorphism. The map G : X×X → X
given by G(x, y) = u−1(u(x) + u(y)) is by construction continuous, com-
mutative and associative. In addition, being e ∈ X such that u(e) = 0, it
follows that G(e, e) = e. Now G(x, z) = G(y, z) =⇒ u−1(u(x) + u(z)) =
u−1(u(y) + u(z)) =⇒ u(x) + u(z) = u(y) + u(z) =⇒ u(x) = u(y) =⇒
x = y (x, y, z ∈ X), so G is cancellative because it is commutative. Finally,
given x ∈ X, n ∈ N, call y = u−1(u(x)

n ) and notice that n.y = x.

The implication (v) =⇒ (iv) is obvious.
(iv) =⇒ (iii): By Theorem 2 and Remark 2, it is enough to see

that the structure of totally ordered topological semigroup that F defines
on (X, -) is translation-invariant and super-Archimedean, but this follows
from Lemma 4 and Lemma 5. ¤

Remarks 4. (i) The equivalence (iii) ⇐⇒ (iv) for the particular case
in which X is an unlimited interval of the real line corresponds to Aczél’s
classical solution of the associativity equation. (See Aczél [1], [5]). It is
noticeable that the proof that appears on pp. 107 and ff. of Aczél [5] is
much longer than ours. Another proof of Aczél’s result, also given following
a simpler approach may be seen in Craigen and Páles [6].

(ii) In the literature, there are also some proofs given for more restric-
tive situations than Aczél’s approach. For instance, in Ch. 6 of Castillo-
Ron and Ruiz-Cobo [16] a proof is given for the case of twice differentiable
functions defined on intervals of the real line.
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(iii) The implication (iv) =⇒ (iii) corresponds, essentially, to the
comments previous to Theorem 7, p. 313, in Clifford [14].

(iv) By Lemma 4 and Lemma 5 it follows that a totally ordered topo-
logical semigroup that is connected and cancellative is additively repre-
sentable, hence commutative. Moreover, it is straightforward to see that
the range of a continuous additive utility function defined on a cancellative
totally ordered topological monoid must be one of the following intervals
of the real line: [0,+∞), (−∞, 0], R, all of which are divisible. Therefore
such a monoid must also be divisible. Hence we can replace condition
(v) in the statement of Theorem 3 by the apparently weaker, but actually
equivalent: “(v*) There exists a continuous map G : X ×X → X that is
associative, cancellative, and has a null element .”

(v) Searching for an alternative proof that would look different from
the ones existing in the literature to demonstrate Aczél’s Theorem 1 or its
generalization (iii) ⇐⇒ (iv) we could think about a shorter version of
Theorem 3, based on the equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (v),
proving the “new” implication (v) =⇒ (i). We present here a sketch of
the proof of this implication. Observe that the positive cone is given by
X+ = {a ∈ X such that a ≺ G(a, a)}. X+ is stable because by Lemma 4,
X is translation-invariant. Let us show that X+ is perfectly separable.
(The proof for X− is analogous): Assume that X+ is nonempty, and fix an
element a ∈ X+. Since X is divisible, given n ∈ N there exists an element
c ∈ X+ such that n.c = a. By translation-invariance it follows that c is
unique. Thus we can use in full sense the notation c = a

n . Now it is enough
to prove that the countable set D = {(m.( a

n ))}n,m∈N is order-dense in
X+. This follows from the fact of X+ being super-Archimedean, stated in
Lemma 5: First notice that given two positive rational numbers m

n and m′
n′

with m
n < m′

n′ it follows by translation-invariance that (m.( a
n )) < (m′.( a

n′ )).
Now take two elements x, y ∈ X+, with x ≺ y. Since X+ is super-
Archimedean and translation-invariant, it is Archimedean, and, because it
is divisible, we can find an element m.( a

n ) such that m.( a
n ) ≺ x ≺ y. By

Archimedeanness again, the sets of real numbers A = {p
q ∈ Q : p.(a

q ) ≺
x} and A′ = {p′

q′ ∈ Q : p′.( a
q′ ) ≺ y} are bounded. However, by super-

Archimedeanness there exists k ∈ N such that x ≺ k
k+1 .y. Therefore

sup A ≤ k
k+1 . sup A′. Thus we can find a rational number g

h (g, h ∈ N)
such that sup A < g

h < sup A′. Hence x - g.( a
h ) - y and the proof is

complete. (For more details, see the proof of Theorem 2 in De Miguel
et al. [11]).

(vi) About the uniqueness of the solutions of the associativity equa-
tion, let us observe that if we start with a totally ordered set satisfying
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the condition (i) of Theorem 3, we can endow it with a structure of semi-
group, so finding a solution of the associativity equation on X, for any
utility function u : X → R. Notice also that every multiple k.u, (k ∈ R,
k > 0) of the utility function u defines the same structure of semigroup
in X, or, in other words, leads to the same solution of the associativity
equation. Actually, for another utility function w to define the same struc-
ture of semigroup as u it is necessary and sufficient that w be a positive
multiple of u. This comes from a result that asserts that given two ad-
ditive utility functions u, v defined on a totally ordered semigroup there
exists a positive constant α such that v = α.u. (See, e.g., Lemma 1 in
Marley [17]). Let us give an alternative proof of this result, for the par-
ticular case of positive semigroups. (The extension to the general case is
straightforward): Fix x0, and consider an element x in the positive cone
X+ of X. Put k = u(x)

u(x0)
and α = v(x0)

u(x0)
. Approximate k by a strictly

increasing sequence (pn

qn
)n∈N of rational numbers (pn, qn ∈ N). We obtain

that pn.u(x0) < qn.u(x) =⇒ pn.x0 ≺ qn.x =⇒ pn.v(x0) < qn.v(x) (n ∈
N) =⇒ v(x) ≥ limn→+∞{(pn

qn
).v(x0)} = u(x)

u(x0)
.v(x0) = α.u(x). Chang-

ing the roles of u and v it follows in the same way that u(x) ≥ ( 1
α ).v(x).

Therefore v(x) = α.u(x).
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Economı́a 7 (1990), 235–244.

[16] E. Castillo-Ron and M. R. Ruiz-Cobo, Functional Equations and Modelling in
Science and Engineering, Marcel Dekker, New York, 1992.

[17] A. A. J. Marley, Abstract one-parameter families of commutative learning oper-
ators, Journal of Mathematical Psychology 4 (1967), 414–429.

JUAN CARLOS CANDEAL
UNIVERSIDAD DE ZARAGOZA
SPAIN
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PAMPLONA
SPAIN

ESTEBAN OLORIZ
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