Realizability and approximate realizability
by parabolic differential equations

By F. SZIGETI (Budapest)
Dedicated to Professor Zoltdn Daréczy on his 50th birthday

In this paper we shall consider systems described by parabolic partial differen-
tial equations. Firstly the transfer functions of these systems will be calculated and
some of their fundamental properties will be established. Then we shall deal with
the realizability of the analytical functions by control systems governed by pre-
scribed parabolic partial differential equations. The realizing system will depend
on the transfer function only in the observation term, while the dynamics of the
system is universal for all transfer functions. Moreover, this dynamics is the mathe-
matical model of the physically well realizable heat conduction.

1. Let ¥<H be a pair of Hilbert spaces with continuous and dense inclusion.
The Hilbert space H will be identified with its dual space H*. Let a: VXV —-R
be a continuous bilinear form. The symmetry and the coercivity of a will also be
supposed. Then a continuous linear operator A: V—V"* can be defined by

(Au, vy = a(u,v) (u,veV).
Consider the abstract ordinary differential equation
0 u'+Au=f, u0)=g,

where f€Ly((0, T), V*), g¢ H. Then it is well-known that problem (1) has a unique
solution u belonging to the space

WA([0, T1,V,V*) = {u€ Ly((0, T), V), w'€Ly((0, T),V*)},
and the application

(g!f) — U
is linear and continuous, that is, there exists a constant K such that
¥ lubws = K(lel+ A1

We notice that the constant K depends only on the constant a of the coercitivity
estimate

3 a(u, u) = aful;.

We shall consider the following special cases.
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Let QcR" be a bounded domain with piecewise smooth regular boundary.
Let ay, a;;€ L..(2) be functions having the following properties:

a) a;=aj CL =12, isss 1)

b) there exists a constant =0 such that

ay(x)=a ae. in Q,

.12_1 aij(x)fi é; = af)?
for each €R" a.e. in Q. '

I. Consider the Hilbert spaces V=H'(Q), H=L,(Q), where H*(Q) is the
following Sobolev space

HI(Q) - {uELz('Q)s ax, HGLZ(Q)) = 1’ 2) wery "}'
Define the bilinear form a: H'(Q)XH'(2)—R by

(4) a(u,v) = ﬁl-(uz-'l a;;0y, uava+aouv).

This bilinear form a corresponds to the differential operator A: H'(Q)—~H'(Q)
defined by

Au = — 2“' 0x,(;;0,,u)+ agu
i,j=1

with the boundary condition ﬁl—l =0.
dvy |oa

2. Now consider the Hilbert spaces V=H}(Q), H=L,(Q). The bilinear form
a: HY(Q)xH}(Q) will be defined in the same way. This restricted bilinear form a
has the symmetry and coercitivity properties. Finally, we mention that this cor-
responds to the same differential operator 4 with the boundary condition u|yq=0.

In either of these cases, the coercitivity estimate (3) holds.

Hereafter suppose that the immersion V'C H is a compact operator. Then the
operator A: V*—V* defined in the dense subspace VcV* has a selfadjoint
compact inverse operator G: V*—V*. In fact, the operator

Gy ~V*
S v
VFcH

is compact. Thus there exists a nondecreasing sequence (4;): N—R, of eigen-
values of the operator 4 with the corresponding complete orthonormed sequence
(¢x): N—=V of cigenvectors. Then the spaces ¥V, H, V* can be characterized by
the Fourier coefficients #(k) (k€N) of their elements » with respect to the ortho-
normed sequence (¢,). Thus

a) ucV if and only if tﬁ:a(k)u,‘ .
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b) uc¢H if and only if 3 i(k)* <e=,

k=1
¢) ucV* if and only if fﬁ(k)zlfl <oo,
k=1

2. Systems governed by differential equations (1).
Now we turn to defining control systems with observation equation. For this
consider the following space of right-hand side functions

{/: R =V SR = [ IS O} exp(=2R0) dt <=},
0

where RE€R, is a given number. Then the estimate

I f a0, 1y, v%y = ISl exp RT

holds for each T€R,. Therefore, from the inequality (2) and our remark we get
the estimate

| el wago, 13,v, vy = K(llgllE + 1 fI* exp 2RT)'/? =
= K(llgl&+1f1*) exp RT.

Define the following space of solutions

SR = {u: R+ b V: “,R = ﬁ_l]]: H uu",—j,([e.r].y.yo, exp(-— RT) “"-'-':m}.

Thus the previous estimate shows that

o lul = KClgl3+171D.

Now we turn to defining a single input single output system. Let the space Cg
of controls be defined by the following way:

Cr = {a-': R,—~R: |7, = [ o()*exp(—2Rr)di <=}.
0
Then we shall define the systems with the elements bEV*, c€V* by the equations
u'+Au = bv, u(0) =g,
P <cr ”)s

where (-, -) is the dual pair map of ¥, ¥*. From the inequality (5) we can prove
the following estimate:

(6)

g
[ y(02dtexp(=2RT) = |lcl} | ulldrsgo,11,v,v+) €xp (— 2TR) =
0
= K2[cl}+ (IgIE+ 1B+ [212,).
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Now define the space Oy of observation by

.4
Og ={y: RR: Iylp, = sup [ y(i?dtexp(—2RT) <e=}.
=V e

Therefore the input-output map
(8 72) =y

as an application HXCpg—0p, is a bounded linear operator.
For convenience system (6) will be considered in a diagonalized form in the
basis (¢;). Thus system (6) can be written by coordinates

a(ky +Aa(k) = b(k)v, a(k)(0) = g(k) (keN),

oo

Y= kz; é(k)ack).
Therefore

y() = 3 &) (xp (< A&+ [ exp 2u(c—0bK)e(@) dr).

k=

The existence in the half plane {Rez=R} of the Laplace transform of the
functions v€Cg, €0, follows from the definition of the norms in the spaces
Cr, Og. To simplify the calculation we shall suppose that g=0. Then the Laplace
transformed input-output map is the following

oo

(Ly)(s) = 3 é(k)b(k)(s+2A) M (Lv)(s) =

k=1
= 2 (S a0 e Wbw)s L),
Define the transfer function H by
(7 s HE) = 3 (1S 5160 bR)s'

Thus the relation between the Laplace transformed control and observation can be
expressed by the equation
(Ly)(s) = H(s)(Lr)(s).

The realization of an analytical function H consists in giving a system (6) such
that its transfer function is H. A function H is said to be realizable, if it has a real-
ization (6).

Now, by the following lemma, we can justify further generalizations of real-
izability.

Lemma 1. If b, c€V* then the function H defined in (7) is analytical in the
open disk D, of radius o.
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Proor. By the Hadamard formula, the convergence radius r of H satisfies
the inequalities

rt=Tm| 3 2=t ek) b =
k=1

= Tmot| 3 A5 6005 = at ([blye el = .

Therefore, if H has a realization (6) and (3) holds then H is analytical in the
open disk D,.

Let X be a Banach space of certain analytical functions. We shall say that X
is approximately realizable if the set of functions H realizable by systems of type
(6) is dense in X. Now we turn to the proof of our main theorem.

Theorem 1. Let VCH be a pair of Hilbert spaces with compact and dense
inclusion. Suppose that a bilinear form a: VXV —~R is continuous, symmetrical and
satisfies (3). Then, for each O<r<uwa, the Hardy space H, of analytical functions
over D, with trace belonging to Ly(0D,) is approximately realizable, even if an element
beV* is prescribed with the property that infinitely many Fourier coefficients b(k)
differ from 0.

Proor. Let b€ V* be an element having the property mentioned in Theorem 1.
Define the operator A4,: V*—H, by

Abf-':H

where H is defined in (7). It is clear that 4, is well-defined. In fact, by Lemma 1,
the function A4,c is analytical in the open disk D,. Estimate the modul of H(s)=

=(4,0)(9) | B
(ool = 3 (L) ( 3 arewbw) = (1-EL) bl et

o o

Therefore ’
I4yela, = @ (1) 1blyelele.
The second, improved statement of Theorem 1 follows from the density of the range
of A4, or, by using the orthogonality relation
H, = R(4) & N(4),

from the nullity of the kernel N(A4;). We shall prove this last statement. Let
HEN(Ay). Identifying the dual space H; with H,, this means that

0={e, Ay H) = (Apc, H)y, =

T -
= % i (,é; (— 1)/ ¥ exp (- 2=jig) H(rexp 2rip) - (,51' (2771 e(k)b(K))) do =

= ZeWi (3 W ADEEER (o)
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where H(k) (k=0,1,...) are the Fourier coefficients of the function HE¢H,.
Therefore

oo H’ s
31y 5 = o.
j=o {
By our hypothesis on b, there exists a subsequence (4;'): N—R, such that

Jg‘; —WWAG)GEY =0 (IEN).

Therefore the analytical function z~— > (—z)/H(j) vanishes over a sequence
j=0
tending to 0. Thus H(/j)=0 (j=0, 1, ...), thatis, H=0.

Remark. If b, c€V'* then A,c¢ is analytical over the domain D,=C\{4,, 4, ...}.
Thus H, has elements having no realization of type (6).

Now we shall deal with the exact realizability of Banach spaces of analytical
functions. A Banach space X of certain analytical functions is exactly realizable if
each HEX is realizable.

Let the Banach space X; be defined in the following manner

e

Xy ={H() = Zx(s+m) [H] = 3l it <o}
It is easy to prove that every H¢ X is analytical over the domain C\ {4,, 4, ...}’
Now we can prove an other statement.

Theorem 2. Let H be an analytical function. Then H is realizable by a system
(6) if and only if H belongs to X,.

Proor. The necessity follows easily from (7). For the sufficiency, consider a

vector x, such that ' |x;| Az '<<e. Then a required realization will be defined with
k=1

b, ceV* by the following way:
b(k) = é(k) = |x, V2.

By modifying the definition of b, c€¥*, we can also obtain realizations with
non-vanishing Fourier coefficients b(k) (é(k) respectively). In fact, let b,,c €V*
be defined by

y 1% i x40
é"+(k)=‘3+(k)= {k_k 3

1, if Xg = 0.

Then the realizations (6) with b, ¢ (b, ¢, respectively) satisfy this property. It is
obvious that if x, (k=1,2,...) are non-vanishing, then the Fourier coefficients
b(k), é(k) are simultaneously non-vanishing. Therefore, in this case, the realizations
can be considered canonical. In fact, if all eigenvalues 4; of A are simple then the
approximate controllability and weak observability of the system (6) are equivalent
to the non-vanishing of the Fourier coefficients 5(k) and é(k) respectively. This
will happen in the one-dimensional parabolic case when the differential equation
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of the system is
O u—0,(pou)+qu = br

over a one-dimensional interval (a, b).
Now we shall apply our results to the special cases mentioned above.

Corollary 1. Let QCR" be a bounded domain and a,, a;;€ L..(Q) (i,j=1, ..., n)
be functions having the properties a) and b). Then, for each O<r—=uo, the Hardy
space H, is approximately realizable by systems described by the following parabolic
partial differential equation

3,“— 2"' aii( ;;3,,u)+aou= bv,
i, j=1
(8) u(O, ') =0, ulan =0,
y ={cu),

where b, c€ Hy(Q)*, even if an element bcH{(Q)" is prescribed with the property
that infinitely many Fourier coefficients b(k) differ from 0.

We can apply Theorem 1 with V=H(Q), H=Ly(2) and the bilinear func-
tion (4). In fact, from properties a), b) it follows that the bilinear form (4) is sym-
metrical, continuous and satisfies the coercitivity estimate (3).

Corollary 2. Let QCR" be a bounded domain and a,, a;;¢ L..(Q) (i,j=1, ..., n)
furnictions having the properties a) and b). Then, for each O<r<a the Hardy space
H, is approximately realizable by systems described by the following parabolic partial
differential equation

0, u— Z"’ 3;‘(0‘!3x1u)+a.,u = bv
i, Jj=1

©) u0; ) =0, < o,
Y= (C, u>

where b, c€ H(Q)*, even if an element be H'(Q)* is prescribed with the property
that infinitely many Fourier coefficients b(k) differ from 0.

Now we can apply Theorem 1 with V=H(Q), H=L,(2) and the bilinear
function (4).
Consider the eigenvalue problems

n
o 3:,(atjax,u)+aou = Au, ulog =0,
i, j=1

L du
_i'JZ.:i 3x=(ai_;3,ju)+auu = Ilu, dvA o =0
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and let all their eigenvalues be denoted by
=/
Ha

B
1A
Ilh

A
ItA

Hy

respectively.

Corollary 3. Let H be an analytical function. Then H is realizable by (8) (re-
spectively (9)) if and only if H belongs to X; (respectively X,). We can also obtain
realizations with non-vanishing Fourier r_oeﬁic ients b(k) (é(k), respectively). Even, if
H can be represented by a vector x with non-vanishing coordinates x, (k=1,2,...),
then the Fourier coefficients b(k), é(k) (k=1,2, ...) are simultaneously non-vanfshing,
that is, for this fuction H the obtained realization is canonical.
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