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Abstract. The present paper is concerned with an asymptotic analysis of a complex renewable:
system operating in random environments. Supposing “fast repair” it is shown, that the time to
the first system failure converges in distribution, under appropriate norming, to an exponentially
distributed random variable.
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1. Introduction

The final goal of reliability theory is to give an estimate of the most important
characteristics of the given system. The measure of greatest interest is the distribu-
tion of the time to the first system failure. In many models of practical interest
“small parameters” are usually present e.g. the failure rates of elements are much
smaller than their repair rates. (This is termed in reliability theory as “fast repair™.)
This situation enables us to use approximate methods in reliability calculations.
For good reviews and materials the interested reader is referred, among others, to
[3—8, 11—15]. It is also well-known that the great majority of problems can be
treated by the help of Semi-Markov Processes, Semi-Regenerative Processes or,
more generally, processes with an embedded point process [cf. 5]. For those models,
mostly stationary reliability measures are obtained, and characteristics like time
to the first system failure are difficult to obtain. Since the failure-free operation
of the system corresponds to sojourn time problems we can use the results obtained
for SMP. It is easy to see that in the case of fast repair the exit from a given subset
of the state space of the underlying SMP is a “rare” event, that is, it occurs with
a small probability. Thus, it is natural to investigate the asymptotic behavior of
sojourn time in a given subset, provided that the probability of exit from it tends to
zero [see 1—2, 9—10].

The aim of the present paper is to deal with an asymptotic analysis of a com-
plex renewable system operating in random environments. Supposing “fast repair”
it is shown that the time to the first system failure converges in distribution, under
appropriate norming, to an exponentially distributed random variable. The main
contribution of the paper is the following. The failure and repair intensities of
the elements depend on the indices of the failed elements and the state of the given
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random environment. As a result of this assumption, the corresponding subset of
the limiting Markov process — constructed to the problem — is not a simple es-
sential class of states. Hence, the “classical” methods cannot be applied. Using the
results of [1—2] the asymptotic exponentiality is proved.

2. Preliminary results

Let (X,.(k), k=0) be a Markov chain with state space
m+1
3 X, XNX, =0, 1%},
q=0
defined by the transition matrix | p,(/?, j*¥)| satisfying the following conditions:

L. p,(i®, j @) ~p, (i, j©®), i, j9cX, and P,=|p,(i®, j )|, i, j®cX, is ir-
reducible;

2. p(i®, jO+D) =g @ (W, je+D) | o(g), VcX,, jUtDeX, 43
3. pJI“’,ﬂ”)—*O, !'('),ﬂq)‘EXq, q%l;
4. p (i, jM)=0, {9€X,, jP€X,, z—q=2.

In the sequel the set of states X, is called the g-th level of the chain, ¢=0, ..., m+1.
Let us single out the subset of states

@=0x,

Denote by {II1.(i?),i9cX,}, g=0,m the stationary distribution of a chain
with transition matrix

P (i@, j@) l
; z p‘(,-(q)’ k(nl+l)) | 4
Exm-ﬁl

kim+1

i9eX,, jPeX,, ¢ z=m,

furthermore denote by g,({z,)) the steady-state probability of exit from (),

that is
g(@) = Z O™ I p(™, j=+n),

;'l'm)exm J(M+l’exm+l
Denote by {IT,(i®), i*)¢€ X,} the steady-state distribution corresponding to P, and let
I, = {I,(®), eX,}, NP = {II,(i'9), i X,)
be row-vectors. Finally, let
AD = [ (D, ja+D)|, l'(‘”EXq, jla+he X451, q=0,m.

Conditions (1)-—(4) enable us to compute the main terms of the asymptotic expres-
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sion for [T and g,((,,)). Namely, we obtain
I0=eM,A94V ... ATV 4o, g=1,m,
&((a) = &+ 1, ADAD .. A™ 1 4 o(e"+Y),

where 1=(l, ..., 1) is a column vector (cf. ANisiMov [1—2]).

Let (£.(1), 1=0) be an SMP given by the embedded Markov chain (X,(k), k=0)
satisfying conditions (1)—(4). Let the times 7,(j*, k®)-transition time from state
9 to state k‘®-fulfil condition

E exp {i0B,t,(j, k®)} = 1+a,(s, z, 0)e™ ' +o(e"+?)

(1)

where f, is some normalizing factor. Denote by .(m) the instant at which the
SMP reaches the m+ 1-th level for the first time, provided ¢,(0)€{(x,). Then we
have:

Theorem 1. (Cf. ANisimov (2] pp. 153.) If the above conditions are satisfied then
lim E exp {i0B,2,(m)} = (1—A(0))~,

where
2 Ho(j)po(ja k)ajk(oo 09 9)

— _hkEX,
(G e I, A9 .. A™]

In particular, if a;(s, z, 0)=i0m(s, z), (i=|,"j) then the limit is an ex-
ponentially distributed random variable with parameter

M, A ... AWL( 2 To(/)pa(: k)mju(0, 0)).

3. The mathematical model

Let us consider a renewable system consisting of N elements and n repair crews.
The elements are assumed to operate in a random environment governed by an
irreducible, aperiodic Markov chain (X,(f), t=0) with state space {l,...,7,} and
with transition density matrix

{a,-.;,9 hoh=1Ln,a, = 20111}-
J# iy
Whenever X,(#)=i; and at time ¢ there are 5, s=0, N—1 elements with indices
ky, ..., ky at the repair facility, the probability of the j-th element failure in the
interval (¢, t+h) is

Aj(il: kla 4y k:)h+0(h)1 f€{I! ot | N}\{klv LA k:}‘

When the elements fail they enter a repair facility and will be immediately served,
unless all the repairmen are busy, otherwise they will wait in a queue in the order
of their breakdowns. The repair facility is supposed to be imbedded in a random
environment, governed by an irreducible, aperiodic Markov chain (X,(7), F_—"O)
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with state space {1, ...,r;} and with transition density matrix
{bh!l’ iS’ jS — l‘! T3, bf:is P Z bi:i}'
j#l‘g

Similarly, whenever X,(f1)=i, and at time ¢ there are s, s=1, N elements with
indices k;, ..., k, at the service facility, the probability of the j-th element repair
in the interval (1, 7+ h) is

Pj("a: kis ..o ks )h+o(h), jeEiki, ..., k:llin(s.n)}

where {ki, ..., kmins,m) denotes the indices of elements under repair. The en-
vironmental processes, operating and repair times are assumed to be independent
of each other.

Let us consider the system under the assumption of “fast repair”, that is,
uis: ky, ...y kg, 8)—+oo as e—0.
For simplicity let

pj(iﬂ: k], — ks: 8) = ‘uj(l.z: kl’ sssy kg)js.

The system is said to be failed iff the number of failed elements is m+1, 1 <m<N.
Our goal is to determine the distribution of the failure-free operation time of the
system. Therefore, construct the following multi-dimensional Markov process

Z,(1) = {X(), X;(0): Y,(0; 7:1(0), y2(1)s o0 Py (D}
with state space

{(i], l'g: S; kl, sy ks), il - l, rl, f.z — l, rg, S=0, N, (kl" weny k,)EV?V, ku =0},

where X,(r), X;(1): governing Markov chains,

Y.(#): number of failed elements at time ¢,

71(1), Vy,0(1): indices of failed elements at time ¢ in the order of their breakdowns,

Vi: set of all variations of order s of the integers 1, ..., N. Let us single out the
subset of states

<am> = {(’.nfz: q; kl; | kq)s lt] = rrl'! '.2 o Rs q= 0’ m, (klv e wy kq)EV?J}
Let
Q,(m) = inf(z: Y,(1) = m+1)Y,(0) = m)

that is, the instant at which the system breaks down for the first time. Hence, the
problem is to determine the distribution of the first exit of Z,(r) from (a,).
Let
a,-l,-ler;,;,—{‘ Z )bj(l‘l: k].’ veay k_,)+
Jrkyy ek

min(s,n) 3

+ 2; i, (it kyy ooy ke = R(iy, Byt 85 Kyy -ooi k).
J-
It is easy to see, that the sojourn time of Z,(¢) t,(iy, iy: s: ky, ..., k) in state
(i3, is: 55 ky, ..., k) is exponentially distributed with parameter R(iy, i5: 5; ky, ..., ky)-
Furthermore, it can be readily verified that the transition probabilities for the em-
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bedded Markov chain as ¢—~0 are
Dol iat 8% Ky wis i) Ui lat 8% Ky sk ) mofl) ¥ 1;
BGL20: Risvvas i) (B ks 75 Kas vendd]l =0(1); - 52 L,
Pulllys ia: 03 Kz vois K)s (s Vgt 84135 Ry, iy Ky Kyat)] =

ll'l.l

= (A,,,(1: ks ..o kJ)ef Z Pk (iy: kyy ooy k)(140(1)),

pel(is, i3: 05 0), (i, ia: 05 0)] = ay,;,/R(iy, i3: 0; 0),
Pel(iy, 122 05 0), (iy, Jo: 05 O)] = by, ;,/R(4y, 32 05 0),
Pel(iys 12205 0), (43, dy: 15 k)] = 2433y 0)/R(iy, iy: 05 0).
This agrees with the conditions (1)—(4), but here the zero level is the set
{(hs 53: 0; 0), (s 132 1; k), #y = 1,1y, iy = 1,75, k =1, N}
while the g-th level is the set
(il g+ 1s Kas s ki) & = 1,15, fa= 1, 7as (s ooos kg 2)EVEHY).

Since the level 0 is in the limit forms an essential class, the probabilities
I,(iy, iy: 0;0), I (i, iy: 1: k) satisfy the following system of equations

(2) Ho(il,fz: 0; 0) — jz; Ho(jl’f2: 0; O)Gh‘l/R(jl, l‘z: 0; 0)+
+12: 1,(iy, ja: 05 0)by,./R(Ey, ja: 0; 0)+ Z” (iy, iy 15 k).
1* iy
(3) ,(iy,iy: 1; k) = I1,(, iy: 0; 0)A,(i;: O)/R(i;, iy: 0; 0).
Denote by

@y, i, =1,r), (IP, iy=1,ry

the sationary distribution of the governing Markov chains (X, (1), 1=0), (X,(1), 1=0),
respectively. Clearly

(4) a‘lil 2 H{najll]’ l-l = l,f’l,
7y

(5) H}’ bi!f: - g’ ﬂ )bj iz “2 == l, rz.
Jariy

It is not difficult to verify that the solution of (2), (3) subject to (3), (4) is
,(iy, iy: 03 0) = BII{D I R(iy, iy: 0; 0),

,(iy, iy: 15 k) = BI{P ITY 2,.(iy: 0),
where

13 3npnee 2,11{:, 0)+ @y, 4, + byyi)]

ix:lfxz
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Hence, according to (1) we obtain
Hc(fls i: q; Koo kq) =

q-1
7 A o K
= 8'_13‘”{(11) ‘nf(:) q—s;:'lin(s.n) X(l +0(1)], a "
]]1: Z; ﬂgj(is: kls seey k:)
s=1 j=
and
(CRIER S P 19 %
L=l ly=1 k... k., JEVETE
I{Ah‘_l(&: klv Sadd ks)
52 :amin(s,”) X(1+0(1)),
‘ukj(iz: kl! cesy k,)
s=1 j=1
where

,(iy, ip: 53 ky, --., k)
is the steady-state distribution of chain with transition matrix
| Polis, Byt g5 kyy s k) Uiy Jat 23 Ky oo K2)) |

T, .

1— 2 2 Z pc[(fls l'2: '-'I; kl’ seny kq)'! U'hjz: l'I"'i'l; klv aany km+l)]

=1 =1 (kyserrs ki 41)

flsjl = 1: rl, ik?j2 - m'! (kls Ay kp)eyia _D = q) Z, ‘I’z =m.

Taking into account the exponentiality of 7,(/;,7: s:ky, ..., k), for fixed 0 we
obtain
E exp {ie"0t,(iy, iy: 05 0)} = 1+(e™0i/R(iy, iy: 0; 0))(1+0(1)),

E exp {ie™ Ot (i), ia: 55 kyy ooes k)} = 14+0(E™), 5=>0, (ky, ..., k)EVY.

Notice that f,=&™ and therefore by the help of Theorem 1 we immediately get:

Theorem 2. For the system in question, under the above assumptions, independ-
ently of the initial state, the distribution of the normalized random variable &™Q,(m)
converges weakly to an exponentially distributed random variable with parameter

r r 7 A (l. 3 5 anh k)
1=33% 3 ppmp sGrlk
iy=1 ig=1 (ky, e, kpp 1 1)E V?‘” y ’ m_min(s,n) A ¥
My, (s kyy s ky)

s=1 j=1
Thus, for the time to the first system failure we have

P(Q,(m) > 1) = exp (—e™A1).

;-j(il: kl! eeey ks) = ’19 #j(fzi kl! seey ka) =

In particular,
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so we obtain

ATy -

s=]1 min (S, ﬂ) )

u
For the variable &"*™Q,(n+m) (6) assumes the form
m+n N 1
) A=}.(—)'—] [ ](n+m+l). ‘
u n+m+1 n!n™

It is well-known that if N—< and A-0 such that NA—/’, then the stationary
distribution of a finite-source M/M/n system coincides with the steady-state distribu-
tion of a M/M|n system with arrival intensity 2 and with service rate u. In fact,
from (7) as N—-< and A—0 such that NA—." we have

a2 \n+m
M
n.n H

which was obtained by ANisimov [2] pp. 157.
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