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1. Introduction

Let (M,g) be an n-dimensional Riemannian manifold, and V an arbitrary
linear connection on M for which Vg=0 (i.e. V is supposed to be metrical).

(1) T(X,Y)= Vi¥ —-Vy X—[X,¥]
) R(X,Y)Z:= VxoVy Z—VyoVy Z—Vix.nZ X,Y,ZcX(M)

are torsion and curvature tensors of V. Let pc M, X and Y be independent vectors
at p, and denote by y the plane-position of X and Y. Then the sectional curvature
of this connection is defined by

(R(X,Y)X,Y)

(3) Kv(.”a .J’) = (X, A'>(Y, Y>— (X, Y); s

where (U, V)=g(U, V). If KV(p,y)=k,(const.), then the connection is said to
be of constant curvature. It is well known that in case of the torsion free Levi—

Civita connection V and for dim M=2 the independence of K¥ from 7 yields

also the independence from p, and thus in this case KV=const. (Schur’s theorem).

In this paper we want to investigate the question: Do metrical connections
exist with torsion and with constant curvature? We want to show that for dim M =4,
and with the property - R(X,Y)Z=0 only the Levi—Civita connection can

be metrical and of constant curvature.
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2. A “strong” Schur’s theorem
Let us denote

a) *‘RAY,Z.V)=AR(X,Y)Z, V)
b) SQX.Y,Z, V)= X, Z)X,V)—¥,ZXX,V)
¢) R(X,Y,Z)=R(X,Y)Z
d SQX,Y,Z2)=X,Z)Y-(Y,Z)X
XY, Z,VeX(M).
The following two propositions are known (see e.g. [2] Vol. I. Chap. V., § 1.).

Proposition 1. Let Q: X(M)XX(M)XX(M)XX(M)—~R (the reals) be a
quadrilinear mapping. If it satisfies the conditions

(4)

(A) O(Xy, Xa, X, Xy) = —0(X,, Xq, X, X))
(B) Q(XIDXE'! X:h XG)Z_Q(XHXN X«la Xs)
(C) Q(Xls Xﬂa X:]i Xd)+Q(Xl! Xa, X;a X2)+Q(X1! X-i’ ‘Yza Xs) - 0*
then
(D) Q(le XE; Xas X-.I.) :Q(X:h Xh Xla Xz}-
Proposition 2. I Q and Q satisfy (A), (B), (C) and
(E) Q(XI!Xstlvxz):Q(Xl'!X2!Xl~X2)
then

(X, Xq, Xa, Xy) = O(X, X,, X3, X))
As well known, *R satisfies (A) and (B). If we suppose
5) ¢ RX,Y,Z)=0,

(X,Y,2)
where G means the sum formed from R(X,Y,Z) by cyclic permutation of

the vectors in its argument, then *R satisfies (C) too. It is easy to check that k%S
also satisfies (A), (B) and (C).
Suppose that KV depends on p only. Then KV=k(p)cC=(M) and

() (RX,Y)X,Y) = k((X, X)(X,Y)—(X,Y ).
In this case ‘R and k*S satisfy (E) and (C). Thus from Proposition 2 we obtain that
(7) ‘R(X,Y,Z,V)=k*'S(X,Y,Z,V).

Remark 1. (A “strong” Schur’s theorem.) We can extend the definition of
K¥(p,y) and define

2 v apl) o <R(Xs Y)Za V)
TR X, ZYX, V) -, ZXX, V)

o
This is an extension of K¥(p; X, V), for K¥(p; X, Y)=KV(p; X, Y; X,Y).

P=XY; Z,V).
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We show that:

(I) the independence of K ;’(p, y) from y is equivalent to
O«

(I1) the independence of K¥(p;y* from y*:

- O« - O«
K¥(p) = K¥(p) and K¥(p) = K"(p).

Namely for the Levi—Civita connection v (5) is always fulfilled (the first Bianchi
identity), and thus by Proposition 2 we get (7), and this means that I?"’(p; y?) is
independent of 2. The reverse statement is trivial, since {{ is a restriction of I?. —
Thus the assertion that (I) implies the constantness of KV: KY(p)=k, (i.e. Schur’s
theorem) is equivalent to the assertion that (II) implies the constantness of
E’%: EG(P)="D‘O
K¥(p) = ko < K¥(p) = ko(=ky).

Therefore it seems to be reasonable to call the following statement: “The independ-

0 o
ence of KV(p;y* of y* implies the independence of KV also of p™ as a strong Schur’s
theorem. The above considerations show the coincidence of the two (normal and
strong) Schur’s theorems in case of the Levi—Civita connection.

We show the equivalence of the normal and of the strong Schur’s theorems
also in those cases, when on the connection only (5) is assumed:

O O
K¥(p) = ko> K¥(p) = ko(=ko) if ¢ R(X,Y,Z)=0,

and it is not necessarily a Levi—Civita connection (i.e. if one of them is true, then
so 18 the other too). — Indeed, the premise of the strong Schur’s theorem is a con-
sequence of the premise of the normal Schur’s theorem and of (5). Conversely, the
premise of the normal Schur’s theorem is a part of the premise of the strong Schur’s
theorem. Thus, under assumption of (5), they are equivalent. Also the conclusions

o
are consequences of each other, for KV is an extension of K¥.
=
We also can see that in case of the independence of KV from 7 we get
o'z)R(X, Y,Z)=0. Namely in this case *R=k%S and hence R=kS, from

x,Y,

which ¢ RX,Y,Z)=k o_SX,Y,Z),and becauseof ¢ SX,Y,Z)=0
(X,Y.Z2) X, Y,2) X, Y,Z)
this yields (5).
3. The non-existence theorem
Suppose that KV depends on p only: KV(p, y)=k(p). Then from (7) we obtain
(8) R(X,Y,Z) = kS(X,Y,Z)
and conversely. Covariant derivation of (8) gives
9 (VoR)(X,Y,Z) = U(k)S(X,Y,Z)+k(VyS)(X,Y, Z).
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Here
(VuS)(X.Y,Z) = Vy(S(X.Y,Z))-S(VyX,Y,Z)-S(X, VyY,Z)-S(X,Y,Vy Z).

Developing each term of the right-hand side with respect to (4,d), and taking
into account that V is a metrical connection, and hence

0= (vb'g)(X’ Z) = U<Xs Z>_ (VUXs Z)‘_ <Xr VUZ>
holds, we obtain (VyS)(X,Y,Z)=0 YX,Y,Z, UcX(M). Then (9) reduces to

(VeR)(X,Y,Z) = U(k)S(X.Y, Z),
and in view of this

(10) ¢ (xR EZ V) = o (XUW)ST.Z,V)} =

(X,Y,2Z)
= X(k)(X, VYZ—(Z,V)Y)+Y (R)((Z, V)X —(X,V )Y )+
+Z(K)((X, VY = (¥, V) X).

In a neighbourhood % of p let V=Z and X, Y, Z an orthonormal system.
Then (10) yields

(11 - {(VxRY(Y,Z,V))|y=z =Y (K) X— X (k)Y.
According to the second Bianchi identity ([2] Vol. I., Ch.IIL., §5.)
(12) « 3 R, Z,V)+R(T(X, Y), Z)V'} = 0.

In view of (8)
it R(T(X,Y), Z)V} = o o {kS(T(X,Y),Z,V)} =
=k((TX.Y).V)Z—(Z,V)T(X,Y)+{T(Y,Z),V)X—
—(X,V)T(Y,Z)+{T(Z, X), V)Y—Y,V)T(Z, X)).
Taking again in % V=Z and X, Y,Z for an orthonormal system, we get

¢ {ROX.Y),Z)W}y-z=

(X,Y,Z)
= k((T(X,Y), ZYZ-T(X,Y)+(T (Y, Z), Z)X+(T(Z, X), Z)Y).
Substituting this and (11) into the Bianchi identity (12), in which Z is taken in place
of ¥, and X, Y, Z is an orthonormal system in %, so we obtain
(13)
k((T(X,Y), Z)Z-T(X,Y)+(T(Y,Z), Z)X+(T(Z, X), Z)Y )+ (Yk) X—(Xk)Y = 0.

If KV depends neither on p, then KV=k,=const., and hence Y (k,)=X(ko)=0.
Therefore it follows from (13) that either k,=0, or

- (T(X,Y), Z)Z-T(X,Y)+{T (Y, Z), Z)X+(T(Z, X), Z)Y = 0
1.€.
(14) T(X,Y) = (T(X,Y), Z)Z+(T(Y, Z), Z)X+(T(Z, X), Z)Y

v orthonormal X, Y, ZcX(M).
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We consider the case k0. Suppose that dim M=4. Then we can choose
at p two orthonormal triads X, Y, Zand X, Y, Z,; Z | Z,, since dim M=4. Estab-
lishing (14) for these two triads, their difference yields

T(X,Y), Z)Z~(T(X,Y), Z)Z, +((T(¥, Z), Z)— (T (Y, Z)), Zp)) X +

5
(15) +((T'(Z, X), Z)—(T(Z,, X), Z,))Y = 0.

The scalar coefficients of Z, Z,, X, Y in (15) vanish, for they are independent. By
taking into account the vanishing of the coefficients in (15), we obtain from (14)

a) TX,Y)=TX.2),2)X+T(Z,X),Z)Y

16
i b) T(X,Y) = T(Y,Z,), Z,)X+{T(Z,, X), Z,)Y.

Replacing in (16, b)) X by Z we get

Then from (16,b)): (I) (T(X, Y), X)=(T(Y, Z,), Z,), and similarly from (17):
(I (T(Y, Z,), Z,)=(T(Z, Y), Z). Then from the alternation property of 7T(Z, Y):
(1) (1(Z,Y),Z)=—(T(Y,Z),Z). Finally from the scalar product of (16, a))
with X: (IV) —(T(Y, Z), Z)= —{(T(X, Y), X ). ()—(1V) yield that 2(T(X, Y), X )=0.
Thus T(X,Y)1X. — Interchanging the role of X and Y, we get Y L T(Y, X)=
=—T(X, Y). — However, according to (16,a)) 7(X,Y) is a linear combination
of Xand Y. Hence T(X, Y)=0 ¥p, and for any orthonormal X and Y. Thus 7=0,

and V=V. — Our result is expressed by the following

Theorem. If in a Riemannian manifold (M, g) with dim M=4 V is a metrical
linear connection of nonvanishing constant curvature, for which = RLX. Y, Z2)=0,
then V is the Levi—Civita connection. Wl

This means that (x?;?)R(X, Y,Z)=0 (i.e. the fulfilment of the first Bianchi

identity) characterizes the Levi—Civita connection among the metrical connections
having nonvanishing constant curvature.

Remark 2. In the proof of our Theorem we used s g 2)R()l’, Y,Z)=0 just

0
to obtain *R=k*S. If we assume V to be of constant curvature in the sense of K,
then this immediately gives *R=k*S, and we do not need the assumption of
% g . R(X, Y, Z)=0 for our result. That is if in an (M, g) with dimM=4 V is
i o u!
of nonvanishing constant “extended curvature”: KV(p: y*)=k,(=const.) =0, then
V is the Levi—Civita connection.

Corollary. For a given Riemannian manifold (M, g) dim M =4 there exists in
O

general no metrical connection V for which KV=const.=0. However if such a con-
nection exists, then it is unique, and it is the Levi—Civita connection. — This means
the incompatibility of torsion with constant extended curvature.
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Remark 3. Condition KV=ky(const.) is in our Theorem essential, i.e. T=0
cannot be concluded from the remaining assumptions: dim M =4, Vg=0, and

. R(X,Y,Z)=0. — We have shown ([1] Prop. 1) that for a Riemannian

manifold (M, g) and for a linear one-form 7 on it there exists a unique linear con-
nection V with the properties:

Vg =0 (V is metrical)
and
TX,Y)=n(X)Y—=n(Y)X (V is n-semi-symmetric)
Moreover, for a n-semi-symmetric connection V, dn=0 and il Z)R(){, Y, Z)=0

are equivalent ([1] Theorem 1). — If we consider now a nonvanishing closed one-form
n on (M, g), then there exists a m-semi-symmetric and metrical linear connection
V on M, for which (‘,c‘{Z)R(X, Y,Z)=0, and yet T30, since V is semi-sym-

metric only.
We return to the case k,=0. From this and from (xgz)R(X, Y,Z)=0 we

cannot conclude 7=0. We show this on an example: Using a local coordinate

system (x) we put X;:= Let g and V be given by

2.8
ox'’
(X,-, XJ>Egu(x) — 5;}, VXJXEEI}J‘J'X;‘, rgll(X)=—r121(x) = A = const. ?50,
I (x) = =% (x) := B = const. # 0,

the other I*;(x):=0. Then Vg=0, R=0, hence KV=0=k,, however T=0.
We guess the existence of simple examples for (M, g), dmM=3,2 and V,
for which Vg=0, (T?{‘Z)R(X, Y, Z)=0, KV=ky(const.) =0, yet T=0.
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