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1. Introduction

In his paper [4] BELA GYIRES proved the following criterion for the randomized
block design ([4], p. 285, Theorem 2).

The expectations of the sample elements can be decomposed into the sum of
two quantities corresponding to the block-effect and to the treatment-effect, re-
spectively, if and only if the expectations of the random errors are zero.

The author dealt with the above-mentioned problem in the case of the Latin
square design in his papers [7] and [8]. We could not prove the converse of the fol-
lowing theorem in our generalized model: If the expectations of the sample ele-
ments decompose into the sum of three quantities corresponding to the row-effect,
the column-effect and the effect of treatment, respectively, then the expectations
of the random errors are zero. In the paper [3] we gave a counterexample of the
reversibility of the previous theorem, using, first of all, the method of minimum
dyadical representation of a matrix. This can be found in EGERVARY’s paper [2].

On the basis of obtained results the author thought this was a consequence
of the more complicated restrictions required for the Latin square design. A study
of the twentieth paragraph of [6] and H. O. HARTLEY’s original paper [5] supported
this conception ([6], p. 224).

After this we investigated the reversibility of the next theorem valid for the
simplest analysis of the variance model, for the one-way classification with equal
numbers of observations at each level of the single factor having systematic effect.
If the expectation of a sample element decomposes into the sum of two quantities
where the first one is a constant and the second corresponds to the effect of the
selected level of the factor, then the expectation of the random error is zero. We
were able to reverse this theorem following the method of GYIRES's paper [4]. Nat-
urally these methods are applicable only for fixed effects models. These models
involve only such factors which have systematic (not random) effects.

In this paper we will use the following notations: £y, &; random variables:
&, 1y, 15, { matrix-valued random variables with m rows and »n columns, that is
matrices of dimension mxn consisting of random variables;

E identity matrix of order m;
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O zero matrix of dimension mxn;

B square matrix with complex elements of order #:

X is a matrix of dimension mxn;

S,, 8, are stochastic matrices of order m and n, respectively;

B* is the transpose of B;

B! is the inverse matrix of B;

M(&j), M(&) expectations of £y and &, respectively. M(&) consists of the expecta-
tions of the elements of &;

blls s bln _ : ¥ -

B=| : is a matrix given by its elements;
bnl'- tusy bml " . . . . .

B=|byll,xn or B=“bﬁ";.x-1._u is a square matrix which is given by its general
element;

Gy @yy ..y @y, A, ... m-dimensional column-vectors;

by, by, ..., b,_,, ... n-dimensional column-vectors (0 is the zero vector);

b, is an n-dimensional row-vector;

instead of j=1, 2, ..., m we use the notation j=1, m;

® is the operational sign of the direct product. The direct product of the indentity

matrix E of order m and of the square matrix B of order » is defined by the
equality

lj,k=T,n?

if it is necessary we indicate the dimension of a vector by writing

"mxl-

In Theorem 1 of the second section we give the general solution of a special
homogeneous system of linear equations. This is the main theorem of our paper.
Theorem 2 and its proof can be found in the third section. Theorem 2 is valid for
the generalized model of the one-way analysis of variance. It gives the solution of
the earlier mentioned problem in the case of the one-way analysis of the variance
model. Theorem 3 is in connection with the testing of a statistical hypothesis ac-
cording to which the effects of the levels of the single factor are equal to each other.

Theorem 3 contains an equivalent form of this hypothesis. In the fourth sec-
tion the author gives the minimum dyadical representation of the matrix M(§).

2. The main theorem

Theorem 1. Let E be the identity matrix of order m and let B be a square matrix
with complex elements of order n. Necessary and sufficient condition that B has 0
as an eigenvalue of multiplicity 1 with right eigenvector b, is that a nonzero vector a
of dimension m exists such that the general solution of the matrix equation

(1) EX  ..NMewl .
is given by
(2) X = yay,bs + 4by,
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where a, is the right eigenvector of E which has all its components equal to 1, y and
A are parameters and A runs through all column-vectors satisfying

(3) a*i=0.

Proor. We may assume that B is a Hermitian symmetric matrix ([4], p. 279).

Denote by f, the zero eigenvalue of B having multiplicity 1. It is known that
the matrix E of order mn has 1 as eigenvalue with multiplicity m. Let the corresponding
linearly independent right eigenvectors be the following ones:

1) 1) (0 0 1
1 1 0 - 0

Qo2 x1 = 1 , =, a= l s ooy Aogg = (l) T 0 ’
! 0

: 1 :
1 0 l‘
if m=2k, and

1 1 0) (1 0
1 0 1 0

@o, (2k+1)x1 = 1 g = l , m=]|1],-.., Aog—1,(2%k+1)x1 = 0 s Ay = 0 »
1 0 I [0] 1

if m=2k+1. Denote by x,, ..., x, the column-vectors of the matrix X. Then the
equations of the homogeneous linear system (1) with mm equations and mn unknowns
may be rearranged into the form

X
X

(4) C = Onmxl’

X,
where C is a square matrix of order mn and
(%) C=EQ®B= |E b;|

i,j=L,n"

Conversely, if the matrix C has the form (5) then (4) too can be rearranged into
the form (1).
From the foregoing

(6) Ea;j=a;, j=0,m—1.

Let B have the eigenvalues f,=0, f,=0 (k=1,n—1) and let the corresponding
linearly independent right eigenvectors be b, (k=0,n—1), that is

(7) Bbt Zﬁl‘.bk; kZO, "'_l-
It is known from Egervary’s paper [1] that the eigenvalues of the matrix C are

(8) l'ﬁt) k=0,n—l,
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but each of them has multiplicity m. The right eigenvectors belonging to the eigen-
values are the direct products

aj@'bk} j=0:m_l: k=01n_1-

According to (8) the matrix (5) has the zero as an eigenvalue of multiplicity m.
Thus the system (4) has m linearly independent solutions which are

a, @by, a, by, ..., a,_1@b,.
Consequently the complete solution of (4) is

X
%) [ J =7-a®@by+4i®b,
xﬂ
with
(10) Amx1 = C1@+Ca@p+ ...+ Cp_1@y_1,

where 7, ¢, Cay ..y Cy—y are parameters, taking on arbitrary values independently
of each other.

Xy
If we rewrite the vector l : ] into matrix form, then the solution of the system
xl‘l

(1) has the form
X = ya, b3 + b},

i.e. the general solution of (1) can be given in the form (2).

Now we prove the validity of (3). Since a,, ..., @,-, are linearly independent
we can choose m—1 equations from the m equations of (10) so that the deter-
minant of these equations with respect to the unknowns ¢, ..., ¢,-; should be
different from zero. One can compute the unknowns ¢, ¢g, ..., €—; from the
selected equations applying Cramer’s rule. Substituting the obtained values into
the equation (10) not yet used, we get the relation (3).

At (3) a=0. Indeed, for a=0 the relation a*A=0 would be valid, i.e. the
components of 4 would be linearly dependent. Hence the system (4) would have
at least m+1 solutions. This would contradict our assumption according which
(4) has m solutions.

Putting (2) into (1) we obtain
(13) EXB* = ya,(0 by)*+4(0 b,)*.

This means that (2) is indeed the solution of (1).

The conditions of the theorem are also sufficient in order that (2) be the com-
plete solution of the system (1). It also follows from the previous proof that if the
zero were a non-simple eigenvalue of B then the rank of C (defined by (5)) would
be smaller or greater than m(n—1). Then the general solution of (1) would con-
tain as a proper part the solutions (2), or, conversely, the solution (2) would con-
tain as a proper part the general solution of (1).

Let us introduce the following notations:

X= Exjknj:i"—m;k:'f;, Aol wadld

Then we obtain from Theorem 1 the following
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Corollary 1. The general solution of the matrix equation is given by the expression
(14) x_"‘=]!+).j, j = l,’n, k =l,—n

if and only if B has the zero as a simple eigenvalue and every component of the cor-
responding right eigenvector is equal to 1 and E has (with its eigenvalue 1 such) a
right eigenvector which consists of only components 1.

ProOF. Writing down the solution (2) elementwise we immediately get (14).

It is known that a given matrix with nonnegative elements is stochastic if and
only if it has 1 as an eigenvalue, while the corresponding right eigenvector has all
its components equal to 1. The eigenvalue 1 of a stochastic matrix has the greatest
absolute value among the eigenvalues.

Corollary 2. If' S, is a stochastic matrix of order n and E is the identity matrix
of order m or order n, then the matrix equation
EXyyun(E—S9)* = 0.,
(briefly X(E—S,)*=0) has
xp=y+4 (j=1,m; k=1,n)
as its general solution if and only if the matrix S, has 1 as a simple eigenvalue.

Proor. This can be proved on the basis of Corollary 1. It is easy to see that
the assumptions of Corollary 1 are valid on E and —S,+E.

The condition (3) must be true for the cases of the previous two corollaries.
The stochastic matrix S, of Corollary 2 may consist of positive elements column-

wise equal, or it may have identical elements % ([4], p. 284 and 285.)

3. A generalised form of the one-way analysis of the variance model

We consider the case when the numbers of observations are equal in each cell,
that is the case when equal numbers of observations are made at each level of the
single factor and this factor has a systematic effect on the result. The usual form
of such a model is

(15) ejk o }'+)-J+8jg (j= l,_m; k= ls—n)s

where Zm’ 2;=0, 7y is the so-called overall mean, and 4, is the differential effect of

the ;—th lcvcl of the factor. More precnsely, Aj corresponds to the j-th effect of the
factor. The random variables g, (j=1, m: k._1 ,n) are generally assumed to be
independent and normally distributed with parameters 0 and ¢® The variance o2 is
unknown. ¢, denotes the result of the k-th observation at the j-th level of the single
factor.
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We introduce the following usual notations:

- 1 n
¢j. = ;12 ‘5,‘&;

Sk

WE

z 1
éa. s -;r'l_’-;J'

I
=

k

Il
-

The differences &;.—&.. (=1, m) are discrepancies between the levels of the factor.

The differences &y, —¢;, (k=1,n) are discrepancies within the j-th level of the
systematic factor. The number of levels is m. The random variables &, —¢&;, are
said to be random errors. It is easy to see that they have zero expectations.

From the decomposition (15) of the sample elements follows that the expecta-
tions of the random errors equal zero. Therefore we get from (15)

M(¢p) =7+4; (J=1,m; k=1,n).
Taking into account (14)
M) =xa (J=1,m; k =1,n).

Now we define our generalized model, and with the aid of it we can prove the
following theorem: If the expectations of the random errors are zero in the case of
the one-way analysis of the variance model, then the sample elements can be written
in the form (15).

Let &, «, be the matrix of the random variables ¢;, (j=1, m: k=1, n) which
are defined by (15) and have expectations. Then

{f — ”.?l]uxu+ :E’IJHJ.:l__m; k=m+ ]E‘Bjk“mxn;

|1 ll ).1, A’l’ seey Al €114 €124 00y By

i 1 Axi A iy Bo1s 822y +ee

(16) c= ? : + :2 2 2 + f!l €90 Eap
11..1 j'nn A-, seey ;‘-m Emis Emas +os Epp

Here M{le;ll}=0,,x,- If a, denotes the column-vector of dimension m con-
sisting only of components 1, b; is the row-vector of dimension » consisting only
of components 1, and A is the m-dimensional column-vector of components
Ays Agy ooey A, Where Z; corresponds to the j-th effect of the single factor (j=1, m)
then we obtain from (16)

(17 M(&) = ya,by + Abs.

. g 3o 4 1
Let S, be a stochastic matrix of order m having identical elements el Let

i : b CORA 1
S, be a stochastic matrix of order n consisting of identical elements - Then

sk L aiia
(18) Sl = E aoao. Sg = “;{bobn.
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Moreover let us define the following matrixvalued random variables of dimension
mxn:

(19) ne = &S5, =8485

Then 5, consists of row-wise identical elements. These elements are the means
of the quantities which correspond to the levels of the factor. All elements of { are
equal to £,,. Therefore we can write

(20) n=5L ¢=15.0

The matrix of the random errors {_,,‘*-EJ. (j=1,m; k=1,n) can be written in
the form

1) E—1y = |Ep—E,].

The matrix of the discrepancies between effects due to the levels of the systematic
factor is

(22) #a—{ = |&.—E..
Now we can formulate the following

Theorem 2. The decomposition

(23) M(&) = yaybg +4bg
is valid if and only if
(24) I\'I(g—'h) - Om xn*
ProoF. The random error matrix (21) can be written in the form
S(E-S5y)"

in consequence of (19). Therefore we obtain for the expectation of the random error
matrix the following formula:

M(E—n2) = EM(S)(E—S2)".
EM(S)(E—S)* = O, xa

So

on the basis of (24). This means that the assumptions of Corollary 2 are valid. In
consequence of this Theorem 2 is true, that is (23) satisfies (24) and conversely.

Theorem 3. Let (23) be true. Then

(25) M(@.-{) =0
if and only if
(26) A = cay,

where ¢ is a numerical parameter.

Proor. Applying (19) the expectation of the random error matrix can be written

in the form
My, —{) = (E—S)M()S;.
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Taking into account (23) we get the decomposition
My —8) = y(E—S1) a,(S2bo)" +(E—S,) 4(S:by)".
Since (E—S8,)a,=0 and S,;b,=b,, we obtain
My, —{) = (E—S))Ab,.
Therefore (25) is valid if and only if
(E-S5)i=0,

i.e. if S,4=A4. The last equality means that 4 is the right eigenvector of S, belonging
to the eigenvalue 1. But according to the assumption S, has a, as a right eigenvector
belonging to the simple eigenvalue 1 of the matrix §,. Hence S,4A=4 is true only if
A=cay, where ¢ is a numerical parameter.

Conversely, in the case of Z=ca, we get from (17) the relation

(27) M($) = (y+¢)aybg,
which is a solution of (25).
Theorem 2 can be formulated in the following way:

If the stochastic matrix S; has 1 as a simple eigenvalue, then M(&) can be de-
composed in the form (23) if and only if the expectation of the random error matrix is
the zero matrix.

Finally Theorem 3 is capable of the following equivalent formulation:

Let H, be the null hypothesis that the components of the column-vector 4 — con-
sisting of the quantities which represent the effects of the levels of the single system-
atic factor — are equal. According to Theorem 3 this hypothesis is equivalent to the
null hypothesis Hg according which the expectation of the matrix of the discrepancies
between the effects of the levels of the single factor equals the zero-matrix.

The minimum dyadical representation of M (<)

The dyad generated by the nonzero element ay, of A4,,,,=|layl is defined by
the expression o,s}/a, or in another form by the expression

AegejAlejAe,,
where A=|o,, 0,, ..., 0,]| and
*
5
*
5.
A= ;2 ’
S

o0, is the k-th column-vector of 4 with dimension m, s} is the j-th row-vector of 4
with dimension n, ¢, is the k-th column-vector of the unit matrix of order n, €] is the
J-th row-vector of the identity matrix of order m.

The representation of a matrix is called minimum dyadical if it is the sum of
the minimum number of dyads. The recursive formula for the dyads of the minimum
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dyadical representation in the case of A4 is

AP e ef A

A(l-{-l) A(t} -
e:A(n e,

where AV=4 and A®+"=0 if the procedure comes to an end after s steps. Sum-
ming the former equalities and ordering the obtained formula we get the following
dyadical decomposition of 4:

v, ag; e;AV g,
Let us introduce the notation wu,v; for the k-th dyad of the former representation

(k=1,s). In this case the minimum dyadical decomposition of A is

The following theorem can easily be proved. The rank of a matrix equals the num-
ber of the dyads occurring in the minimum dyadical representation of the matrix.
Further details in connection with this method can be found in [2].
Now we give the minimum dyadical decomposition of M(&). On the basis of (15)

(28) M() = (742 lmxn-

If y+4;#0, then the minimum dyadical representation of M(¢) is

y+4 (Y4255 s Y+ Ajixn
Y+2s

M@® =5

Y+

}’-{-}q (]s l! seey ])IXn
Y+2,

This can be written in the form

(29) M%) =

From (29) we get

L L G
M@) =y % .
mx1

A
With our former notations
M($) = ya,bg + Abg.

The minimum dyadical decomposition of a matrix was also applied in our
earlier papers [7] and [8].
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Formula (29) shows that the rank of M(§) is 1. This fact can be seen also
from (28).

Remark 1. In the case of m=n=1 Theorem2 states that in the one-way
analysis of variance model with fixed effects an arbitrary sample element can be writ-
ten in the form

Cix =y+Ai+e

if and only if M(¢;—¢&;)=0. This means that the decomposition of a sample
element is valid if and only if the expectation of the random error is zero. (The
meaning of the quantities y, 4; and &y can be found in formula (15).)
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