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During the last ten years or so there has been a great interest in nonlinear
models and a number of nonlinear models have been developed. One of them,
the bilinear model, has been studied extensively such as model fitting and parameter
estimation, see SUBBA RA0 and GABr (1984). Its Wiener—Ito representation and
conditions of stationarity are given in the papers TERDIK (1985), TERDIK and SUBBA
RaAo (1987). In this paper we are using the multiple Wiener—Ito integrals to give
the Wiener series expansion for a quadratic in the observation model which is a
special case of the so-called state dependent model defined by PRIESTLEY (1985). The
main difficulties are the determination of the Wiener kernels for the product of
two nonlinear processes. That is why we are giving some explicit formulae for the
product of multiple Wiener—Ito integrals. Using these formulae we are constructing
an approximate transfer function system and the process defined by them will
be close enough to the original solution in the mean square. Finally an assump-
tion is given for the stationarity of a quadratic time series model.

Diagram formulae for the multiple Wiener—Ito integral

Let G be a spectral measure on D=[—m, n] and H% denote the real Hilbert
space of complex-valued functions on D" with properties f(—w,))=/f(®), where

®y,ED" and
1Iflen = [ 1f(@u)*G(day,) <=,
bn

G(dw,) = G(dw,) G(dwy) ... G(dw,).

The subspace H% of HY; contains those f€ H% that are invariant under permutations
of their arguments, i.e. f=symjf, where

ymf(@w) = 5 3 f@r)

2, denoting the group of all permutations of the set {1,2,....,n} and wg,,=

=(wpys ---» @, ). If A is a finite ordered subset of different natural numbers i.e.
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A =(ky, kg, ..., k,), ki<k;y, then w, denotes the vector (w,, @y,, ..., @),
@y € D. Let || denote the number of the elements of " and (), is the /** component
of . If X and & are two sets of such type then ¥ U% and A4\ .Z are the sets
of the same kind with respect to the set-theoretic union and difference of the sets
X, &. (n) will denote the set {1,2,...,n} and (n,n+k)={nn+1,...,n+k}.

Let U,, t€Z be a discrete stationary Gaussian series with spectral represen-
tation

= fe“‘” Uldw), D =[-m,n]
D

spectral measure G(dw)=FE|U(dw)|* and EU,=0. The n-dimensional multiple
Wiener—Ito integral is defined for the functions f€ H% with respect to the Gaussian
stochastic spectral measure U(dw,))=U(dw,) U(dw,)... U(dw,). It will be denoted
simply by

ff(w(n)) U(da)(n))! D" = [—m=n, x]"

D"

concerning the definition and the basic properties of the multiple Wiener—Ito
integral we refer to the works of DoBRUSHIN (1979), MAJoR (1981), RozaNov (1981).
Let fe HE and he H;. Then

[f@um)Uldow) [h@)Udo) = [ (0w (@) Udog.,)+
bn D pn+l

+ 3 [ [ f@w o = Dh(=2)GdR)Udomp)-

k=1 ph-1p

We shall refer to this formula as diagram formula of first order. The rule of forming
the product of an n-dimensional Wiener—Ito integral with a 2-dimensional one is
called the diagram formula of second order. If fe HS and hé HE then

(1 ff(w(u))U(dw(n)) fh(w(za) U(dm(a)) 2 f f(w(n))h(w{n+l.n+2})U(dw(n+2))+
" D?

D+t

+ 3 [ [f@w; @)= Dh(=1, 0,)G@DU(dow) +

J=lp= p
i Z”' f ff(w(n); ®; = Dh(w;, —1)GAA)U(dw,)+
j=ips p

+ 3 [ [fow: o) = ie)h(=24e)Gdie) Uldomg, »)-

i=j pn-2 pt

This formula proves to be simpler for the symmetric functions fc H¢, he Hg i.e.

[ F(@a)Udow) [h@w)Udoe) = [ f(@um)h(@qmnm0) Udog.y)+

+2n [ [f(@@-1y» Vh(@,, — ) G(dA)U(der,) +

p" D

+n(n—1) f ff(m(u—z) s A@) h (= 42)) G(d ) U(dw, _g)).

Dr-% Ds
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One can prove the diagram formula of second order directly by the definition of
the multiple Wiener—Ito integral. Another proof of (1) is based on the GHAW (Her-

mite) polynomials, see TERDIK (1988). As the system {exp (i 2':’ /), =0, £1, }
k=1

is complete in the space H}; so it is enough to prove (1) for these functions. The
spectral representation for the GHAW polynomials of the series U, is

AUy, .. U,) = [ e U(dA).
Dll

Let us fix the numbers #,, ..., t,4» and denote the polynomial A4,(U,, ..., U,) by
A, (U, or simply A4,. Let us put the functions exp (i Z" f /) into (1) and by the
spectral representation we get 1

(2) A, (Upy) As(Upns1,n42) = Ans2(Uig) +

+ Z; C(fj"‘ n+l) An(U(n+z)\{}.n+l})+ Z; C(fj"" n+2)Ax(U(n+z)\{J.n+s})+
i= j=

+ 2 Clti—=1,3) C(t;—ty 1) Ap—s(Umy i, )

i#j

where C(t;—1t;)=cov (U,,, U;). To prove (2) we use the recursive formula

An+1 - An ‘ U:+1 = ‘le C(’n +1— l'i)A.g—1(U(n)\{i})

and that
As(Ugsrnsgy) = U, Uty = Cllair—tnso)-

(A'l (U(“))Uf-n- :) Ul‘n +5, C("n+ L= Jll'!+2) Au (U(n)) —

Therefore

= Aps1(Usny) Uy, .+ ‘—le Cltar—0)U,,, A1 Ueyn) —
—C(tys1= 112 AU = Api2(Ugsa) + 2; C(tj=ty12) A,(Ue\g) +
J=

+J§ Cltura— 1D A, Upsra\n+2.5) +1¢Z; C(ty1=1)C(tysa— 1) Ay—as (Ui pp)

which proves (2). The method used here will be generalized for the diagram formula
of m™ order.

Let % be a finite ordered set of natural numbers k;<k,<...<k;. 24 means
a permutation of #" and wgsy is the same permutation for w,. In case of fcHY
and he HE, X =(n), £=(n+1,n+m) we define the function

S(PAXL ) H(Op+mrue)) =

= [ f(©w> Ox = 2)H(O@s1,n4m} Oz =—lpx)G(dAr)
plXl
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where |X|=|Z|=min (m,n). If |X|=|ZL|=0 ie. A, £ arc empty sets then
f(?.}i"x.fé’)h(w‘,ﬂm)) =f(w(n))k(m(u+1,n+m))'

It is clear that (2 X %)h belongs to the Hg ™ **!. Under these assumptions
we prove the following diagram formula of m™ order (m=n)

(3) [ f0m)Udag) [ (@) Udog)

= Zm' 31 . f S(PH X L) h(O@smygr v ) U(AO 4 my~ U 2))-

I=0 X=@ @K pnam-u
F=(n+1,n+m)
o= |Z|=1

We have seen earlier this formula for m=1,2. Now we put here the case m=3=n

as an example,
f Sy U(dawy,) D’f h(wg) U(dog)
"

- ff(m(,))h(w,,“,w,+g,wn+a)U(dm(n+s))+

pn+s
n 3
+‘Z: jZ: ff(w(l!)s oy = A)h(w(n-]-l.u-i-a); Wpyj = -l)G(d)‘)U(d(n+3)\{i.u+j})+
=1 J=1 pn+1 p
3 Z Z f ff(w("J’ = )'1’ wJ = )‘ﬁ)h(w(n+1.n+3)9 Wy = _Als Wy = —)1))(
i“":j klﬂ Dn-l Dl

X G(d22) U(d®@+9\ . jn+k,n+1) +

i ‘2 - .!;[!f(w(n)! W=y, O = Ay, O = Ag) h(— 2 (5)) G(d2 ) X

i<j<l 8! pn
X U(dwgy\,i.n)-

To prove (3) let us assume that it is true for any m;<m and n, and take the
complete system {exp 1'2'1‘*2.,‘}. The GHAW polynomials can be applied and (3)
has the form

4)
AU AnUpir,nim) = 2 = 2 Cltx—tog) Apim-aUpimnirue))

=0 X=(n) L4
F=(n+1,n+m)
|| =|2Z|=I

where again Uy =(Uy,, ..» Up); Uns1,04m=(Us, 415 ---» Us,,,) and if A" =(k,, ..., &)
and 2¥¢=(h,, ..., h;) then

i
Cllr—1tsg) = lﬂ; cov (Urt‘-Uq,‘)'
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Using the recursive formula for 4,, and the diagram formula of first order we get
An (U(n)) Am(U(u+Ln+m)) = Aa(U(n))Ut,. +1Am—1 (U(n+2,n+m))_'

s _Z; C(tn+1_faﬂ)Au(U(n})Am—2(U(u+2.n+m)\{n+j}) =
j=
= An+1(U(n+1))Am—1(U(n+2,n+m))+
+1§ C(tn +1 "‘{;)An—l (U(u)\{j})Am—l(U(n+2.m+u)) o3

"
_ 1.2; C(fn +1™ 'fn +j) An (U(n))Am—E(U(n-i-s,ni-m)\{n-l»,i})'

Hence, (3) is true by induction for m—1, m—2 and any n, and therefore
AN(U(H))Am(U(u+1.m+u)) =
m=—1

= 3 .3 2 Cltx—ts2) Apim-a(Umsm(rue) +
=0 x=(m+1) 22
L=n+2,n+m)
|x¥|=|2|=1

n m—1

o5 B 2 2 Cltys1—1)C(tx—tsg)
i=1i=0 *=(\{j} »2Z
Z=(n+2,n+m)
|[X|=|£|=1

An +m—2(1+1) (U(n +m}\(:¢'u.‘?UU-u+1})) e

m
e 2 2 Cltys1—tas JC(tx — o)
J=2 i=0 H=(n) X4
F=(n+2,n+m\ n+j}
|| =|2|=1

[ ]
—

An +m—2(l1+1) (U(Hn)\(xui'u {n+1.n+1'}))'

Since the last term equals the first one when k,=n+1, I=1,2,... in it, and the
second term corresponds to the case when X =(n), L=n+1,n+m), (L)=n+1
which is missing from the first one, we have got (4).

The quadratic model and its approximate Wiener expansion
The ARMA model with quadratic terms i.e.

P 0 R
(5) 2NV = 2 biwepte 2 firVaVi—i+K,
K=o k=0 K T=1

au=bn=l

will be referred to as ARMAQ (P, Q, R) model where Ey,=0 and {w,} is a
Gaussian independent sequence with Ew,=0, Ewf=¢* and stochastic spectral meas-
ure W (dZ). Since the product y,_;y,.; is commutative we can assume that the
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polynomial F(Z,, Z,)=_> fi..1Z5Z} is symmetric without any restriction of the
general situation. In equation (5) the & occurs as a parameter being as small as it is
necessary and by the perturbation idea one can calculate the asymptotic Wiener
expansion of the solution by considering a sequence of equations for the transfer
functions. Consider a sequence {¢,(¢)} n=1,2,... of functions of & such that
@n.:1(e)=0(e)p,(e) as eé—~0. Now we are looking for a stationary regular solution
of (5) which is subordinated to the w, in the form

© y= 32 [ nowe" “FW i), D=

n=1

Let the transfer functions g,(%)) be symmetric and denote by | g,(4c)l their L?
norm. The covariance function of y, is

Cy(1—5) = cov (y, 3s) =

ZED [ (5] di

ll=1

and the variance is

1/2
@ == 3 % 1g,Git)
where G(dA)=E|W (dA)|*=0c%dA|2n.

First we examine the product y,y,. If there exists the fourth momentum of y,
then the Wiener expansion of y,y, can be written into the form

(?) yrys s 5' _| fdﬂ()"(ﬂ]7 8, t’ S) W(dj'(n))
a=0 M. D"

and the transfer function system d, is determined by the transfer functions of y,.
We give the explicit formula for d, by the help of the diagram formula. It is clear
that dy=C,(t—s). The first transfer function is

dl. (’19 &g, t, S) =

s 2“* iss Pm(&) Pm1(e)

m=1 ; m!(m+1)! (m+l)m!D£ 81 (@(m: A) En(= D)

=0, G (dw ) + € 2 %ﬂ(m«l-l)l D'_!:gn+1(w("l}’ A8 (= O(m)

e“' —”zwi G (dW{ ll))‘

The variance of the first term in (7) can be estimated in the following way

V([ detw@n) =2 3 22088 1 olglo = 200K6,0
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hence by the Cauchy inequality
I [ 2ms1(@mys D8m(— Omy) G @) G(d2) =
D D™

= f |8m+1(@(m+1)1* G(dO(m 11)) | gl &
pm+1

and we assumed that | g, ..l¢/lg.lc=K, independently of m. The transfer func-
tion of second order of y,y, is

1 p
-2—'-d2(izs Ags & 1, 5) = @*(€)g1(21)g1 (Ag)eiPr+540) 4

S ity 41g) Pm(E)Pmys() (m+2)(m+1)
o A T~ T 2 m

f Em+2(D(mys £2))8m (— D(my) ge=03e; G(dﬂ-’(m)) 3
Dm

+(same terms changing ¢ and s).

n: = 01(e)&1(41) g1 (1) el sy

Put

we get that the variance
v D_[ [% _,,3] W(d)) = 220*(e)KEC,(0).
In the general case we get the transfer function of 2n*™® order

1
(8) '2_'1! d?'“().(gn), 8, f, S) =

13t o(e) "2!-"'1 Pon—1(2) is Fi,
AT glhg)e ™ ?m__mgzn—l(}'(l+l.h))e il o

n = P (&) Ppy 12, (8)
x5 el sy ¥ 52 4 i1, 2m)
rg'l ...E,g.n % e o (m+2r)!

f gm+r—n(w(m+r-—n)9 j~(r+n‘]) gm("" w(m +r=n)* ;“(r+n+l.2n))

pm+r-n
m-+2r m
e =920, G(dw(py 4 p—ny) - (M+1—n)! [m+r—n] (m+r_n]+(samc term).
If we put
2n—1 ] in
@1(8) Pan—i () @ Za,4s 5 4)
b :-21': ;!(anil;! 21 8en-1Gair,am)e * 0 1

20 D
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then we get the following estimate for the variance

d
VD '/' [-——-2:; —rh,] W (dA ) =

o hd m m! m-4 ' m+ Er'!
s20m 3, 3 Lo tbntar i o (e KrC,0,

taking into consideration that

< (2n)!

o T

and

¢m~¢’m+r—"0'_r; (pm+2’w¢m+r_"@2r+ﬂ—2‘

An analogous result is valid for the terms of 2n+ 1™ order as well i.e.

ds, .
V[DM_[ ‘ ﬁjl——qhﬂ] W(d).(g,,ﬂ,)] = 2W+10W+1(g) KI*+1C,(0).

The following theorem is proved

Theorem 1. Let the stationary process y, be defined by

> 0.8 ;
Y= 32 ‘,’ [ 8 CGu) e W (diy)
n=1 n: pn

where
Pm+1() =0@) () and |gnii|c/lgnle =K

for every m. Moreover let us assume that there exists the fourth momentum of y,.
Then for every & for which O(e)<(2K,)™" the following inequality holds

& » 2K
V (rr- P D'_!’ PPy & 1, YW (dAimy)) = O()C,(0) TSR (‘a) X

where
"l @,(8) Qi (2) 0.5 418, 7.2
ﬂm(ltm),&‘s t,s) = g; ng(i(l))gm-l(}‘(l+l.m))e . i

Let us now turn to the quadratic model (5) and ask for a solution of type (6).
If n is fixed then we get an equation for the »' transfer function g,(4,). Let us

begin with n=1
P12 A(e=) g (1) = Ble=*)+8&,(4, 8)
where

AZ)= 3 ayZ% B(Z)= 3 bZ' F(Z,,Zy) =3 fuZ'Z;, |F|=Z|fil
and

R
&= 2 fiadi(4 e —k, =1)
k1=1
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If & tends to zero we see that ¢,(¢)=1 therefore

B(e—* ¥k
0u0) = o ey

We shall show later on that ¢,(¢) can be chosen as

&1 50 @n41(6) = 0()g,(c) and 0O(c) =e.
From this follows that

B ) _ IF]
|etr-SE2], = 20,0151
where
R P
Fl= 3 1 and 14I= [] (-l
kI=1 j=1

a; denotes the roots of the polynomial

P
4(@) = Z oz

These are assumed to be less then 1.
Let us consider the case of the second order transfer function. From (5) one gets

A(e~hr+d)) g, (e )M eF(e~h, e=tha) g, (1,)8:(40) +88a(4(2), &)
therefore ¢,(e)=¢ and

g:s) _ . Fle~th, o) 1) +s—stl: ©)
22!” =g A (e i) 81(11)81(“-2)+3ﬁ1_+iﬁ)-'

Hence
&l ®) = Z J [317 ds(Azys & —k, —f)—gl(zl)glage—mwn].
We can approximate gy(4() by the first term i.e.
|F|

‘ g:(A(2y) - Fe'h, o)
2114 °

2! B A(e*"(31+ln)) gl()l)gl(j-z)
Let now n be odd. Then by the equation (5) and from (8) we get

’ = 222KiC,(0) =

~1Ea, ga(Aim)
A M) gy ()= =

 § i
i -t Xa
a"“Z' gt(}m) &—1(Gas1.m) F(e e ] L4 Tek ’).}.g{n().(,,),t:)

(n=D!
where &,(A(,, ) is deﬁned by (8) and F(Z,,Z,). By the inductive assumption
that ¢,(e)=¢*"?, k=1, —1, this implies ¢,(¢)=e""*. The transfer function

20*
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of n'™ order is determined by the transfer functions of order less than n up to the
0(e? ie.

i 3 -f':"i':" _Ii‘:: A n
gn(j'(n)) £ nz—'l gl‘(}'(l')) gn—l("(1+1.n}) F(? ,e.. : ) =g 2 Kl C (0) |F|
n! = T (n—1)! ~i52, |4]

Let us now denote the new transfer functions by g;. They are determined by in-
duction

B(e—ii)
* a— =
d gl ()‘) o A(e_ij_)
an
. ien i —iz'x_, _‘;‘?x"!
(9) gn (;‘(n)) = ;- 81 (;‘H)) gn-l(j'(i'#l.n)) F(e » € ) ’
n - | (n—I)! 21,
A 2

If we define a process by the help of the transfer functions g, in the following way

(10) = Jot o & (e W )

ne=1
and ¢ is small enough then it will be close to the solution y, of the equation (5) i.e.

2K, |F|
—pt) mpl T
Thus we have got

Theorem 2. Let all the roots of the characteristic polynomial of the AR part
of the equation (5) be inside the unit circle. If there exists a stationary solution y,
of equation (5) in the form (6) with the transfer functions g, such that | g, 1l ¢/l €.l 6=
<K, and @,(c)=e""" then the stationary process y; defined by (10) is an 0(e*) ap-
proximate solution uniformly in t in the sense (11) for every ¢ less than (2K,)™*

A condition for stationarity

In the previous section we assumed that there exists a stationary solution for
the quadratic ARMAQ (P2, Q, R) model (5)

P 0 R
2 Gy = 2 byw_y+e 3 fiiaai-i+K, ag=by= 1.
k=0 k=0 k1=1

Now we start with the definition of the approximative transfer functions g, and
we examine the square mean convergence of their series. Let

B(A)

gi(4) = a0
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and by recursion
F| ( Z’ Ay 2 %)

£ ) n— ) +1.,n =
g:().(,.,)-“: g; gi fl m) 8 (I,f "f)l ) HJ 1+1
(%)

where

P Q
AR = Z o™ B = 2 ™
K=0 k=0

R
F()_”u) = 2 ﬁme_r(uuu)_
k,I=1

To get an assumption for the existence of the variation of the approximative solu-
tion y; we need the following estimation for the square norm of sym g,.

Lemma. Let

R P
Z ' ls |A| = H(l_la;‘l)
= j=1

l 1

and g, be defined as above, where o; denotes the root of the polynomial

o
4,(2) = 3 a,Z"-*.
k=0
Then
P:} 2(n—-1)
lsym g Gl =[] lstize
i
Vn! V6

ProOOF. In case n=2

where o= sup

i BOIBUD Bl
& 0e) = 20 A A, )

and
toym 1t = 13l = 2[ 5] 1t
For n=3
3 B()) 1
g () = H = -
A 24

F(2y, 2) F(2y 423, 23) | F(2a, 25) F(Ay, 23+ 25)
21 AGs+79) Ao+ 7g)
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S0

lsym gilg = ;77_1;_,-[[;]1| gela leslo+ ;] lelolele] =

22
IAI] l’3' Ve

The proof for arbitrary n will be the same as in the case n=4.

tormailoar((7) tetlalailo (3 ) sits+ (] ) lstlolsile) - =

= [12] 1st1t V%T' 0

Theorem 3. Let us assume that all the roots of the polynomial A, are inside
the unit circle, the solution y, of the ARMAQ (P, Q, R) model (5) depends only
onw,_y s=0,1,2, ..., moreover its transfer function g, fulfils || g, /|| 8a-1llc =K, and
e=(2K,) . Then for the existence of a stationary solution for the ARMAQ (P, Q, R)
model (5) it is suffcient that

B . .
SQﬁH&dG <L

For THE PROOF of this theorem it is enough to consider the inequality

V) =V)+V(n—y)
where

zs"-* f g O S W (di,y),

and to take into consideration (11) and the previous lemma.
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