A linear optimization problem and its probabilistic
application
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Summary. A linear program is solved in closed form and applied to obtain a sharp upper bound
for min P(4; U...UA; ), where 4,, ..., A, are events in an arbitrary probability space satisfiyng

PlAd)sax (i=1,....n), 1 =m=n, «€[0, 1] and the minimum is taken with respect to all (s, ..., #,,)
suchthat 1=/=<...</i,=n. Theboundis 1 — ["[;"']"] (mn(l = a) = (n—[an])(m—1))/(n—[an]) [[a""]] .

Let B€[0, 1], m, n€N, m<=n. The following linear program (LP) will be solved
in closed form:

(1) Minimize :Z_: [";m] fh =Pl )
subject to the conditions
(2) =0 for k=0,...,n,k§[2]:,= *ﬁ'[";l)rtzﬂ.

The result is given by

Theorem 1. The minimal value of the above LP is equal to

n—m
@ femn= (ier) —— (mn(1 ~a)~(n~[an])(m— 1),
(n—Lonl) ()

where a=1—f and [an] is the integer part of an. It is attained at t*=(tg, ..., 1),
where

[[ann]]-l(l +[an]—an), if i=[an]

2 T\ 1) et it i = a1

0, if ¢ {{an], [an]+1}.
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The LP under consideration occurs in the following problem of combinatorial
probability theory: Let A4, ..., 4, be events in some probability space about which
nothing is known except that P(4;)=a« for i=1,...,n. Find an upper bound for

(5) g(a, m, n):= - min L P(4,U...UA4,;).

= ™

Theorem 2. We have
(6) g(x, m, n) = 1 —f(a, m, n).

For all values of o, m and n there is a probability space with events A, ..., A, satisfy-
ing P(A)=a for i=1, ...,n such that there is equality in (6).

The connection between certain LPs and bounds for probabilities of logical
functions of events has been noted by HAILPERIN (1965). Related inequalities have been
recently proved by RUGER (1981) and MORGENSTERN (1980). They consider n level
o tests with critical regions A,, ..., A, and look for upper and lower bounds for the
level of the compound test “reject iff at least m tests reject”. Our inequality can also
be interpreted in this context. Related bounds for the probability of the occurrence
of at least (or exactly) m of n events under different side conditions have been derived,
e.g., by ERpOs et al. (1983), KWEREL (1975) or, more recently, by PLATZ (1985) and
MOR1 and SzeEKELY (1985); see also the references in this latter paper.

We need the following estimate for binomial coefficients.

Lemma. Let 1=m<=n, 0=k=n, 0=i=n. Then

O ey BT I G ]

m—1
Proor. We define f(x):=n—x, g(x):=. (n—j—x), x€R.

i=0

Dividing (7) by (;:] shows that we have to prove

(n-i)[?](n-—m)!

n!

® m("")rw= g®@+@-m-n("").

gis convex in the interval (— e, n—m+1). It is easily computed that both sides of (8)
are equal for k=i and for k=i+1. If i=n—m, this implies (8) for k=n—m. As
fis monotone decreasing and g(k)=0 for k>n—m, (8) now also follows for i=
=n—m and k=0, 1, ...,n. Butif i=n—m, (8)is trivially true.
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ProOOF OF THEOREM 1. We have to transform F appropriately. Let 0

Then it is easily checked that

9) Fllisad) = kzl;
k#£}+1
n—=m (M—M
- F (e
k=0
k#=i,i+1

Bt
gis

n—m
[ k ]fk4'

("3")
("7)

m

(n—m
7ol

("7 ) (i) ]

+1

("‘_”[( ]’+[ +1] '“]
n-m_m(" "']( k), <m—”[" ")

k-o [
k=i, i+1
n—m
i n—1

W “o

+

mZ(n

")
e

),
(7

k]],ﬁ
m—l)*é;[:] tk

We denote by Q the polyhedron defined by the inequalities (2). By the lemma, the
expression in square brackets on the right-hand side of (9) is nonnegative. Thus if

(fos +..s 1,)EP, (9) yields

(10) F(ty, ... t,) =

for every i€{0, ...

i€{0, ..., n} satisfying
n-1
(1) T (%% )=

Then clearly F attains its maximum on Qin (7, ...

(12)  fla,m,n) =

[n

,n}. Now assume that there are a point (73, ...,

F(f5, ..., 1)

)

By

m(l —a)+———=

el
[}

H)EQ and a

l—a and kg¢{i,i+1}=>#=0.

, 1) and we have
")
)

m(l —a)+———-=—=(m-—1).

The point ¢* defined by (4) clearly satisfies (2) and (11). The theorem is proved.
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PROOF OF THEOREM 2. Let N:={l,...,n} and P(4)=a for i€N. If TCN,

we set
A(T):= N 4,0 N 4.
JET JET®

We define a probability measure P on the g-algebra which is generated by the sets
A(T), TCN, by

PAW):= 7 3 PA4@T))

where y, is the set of all permutations ¢: N—N. We have

Py == 3 3 PA4@@)) = S PUa) =5, €N,
and, if weset M(iy, ..., i,):={Tc N|TN{iy, ..., i,} %0}, for 1=i<...<i,=n,
PUU..Ud)=—3 3 P(AG(T) =

N: o€y, TEM(i,,....i

1
==z b )P(A(S))_Z.

+ o€y, SEM(ai,, ..., 00,

11}

Z  P(A(9) =

min
g1 <l SEM(Jgs s i)

= mi"; P(4;,U...U4,).

<o <im

Thus,
(13)  min P(4,U..U4,) = min P(4,U..U4,).

1 Coeehy

To prove (6) we can therefore restrict our attention to probability measures P
and events A,, ..., A, for which P(A(T)) only depends on the number of elements
card T of T. Define 1,:= P(A(T)), if card T=k, k=0, 1, ..., n. Then

(14) 1= 3 P(AT)) = é.: [:]q

TCN

and for jEN, l=i<...<i;=n,

n—j i}
(15) PAU..U4)=1- 3 PAT)=1-3 ["k’]r,.
thyen i €T k=0
By (14) and (15), the result follows immediately from theorem 1. All (%, ..., 7,)€Q

can obviously be represented as values P(A(7T)) of a certain probability measure on
a probability space with certain events A4,, ..., 4, . Thus the inequality (6) is sharp.
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Remark. An example of a probability space and events for which equality in (6)
holds can be constructed as follows. Let Q:={w,|Tc N}, where the wy are distinct
elements, and

P({og}):=1f, if card T = i€ {[an], [xn]+1}
P({wr}):=0, if card T¢ {[xn], [an]+1}
A;yi= {ogll€T), 1=1, s n
Clearly the probability space can be reduced by eliminating points with proba-
bility O so that we obtain a space with [[;:1]] +[[omf & 1] points. If an is integer, we

R rast s e [
can take the equidistribution on a set with e elements.
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