Some remarks on the twelfth problem of Hanna Neumann

By KRZYSZTOF HERMAN (Gliwice)

Introduction

In this paper we give a partial answer to the twelfth problem of Hanna Neumann from her book [1]. Namely we prove that the centres of c-generated, c-nilpotent relatively free groups F_c of some varieties are equal to the last term of their lower central series $\gamma_c(F_c)$ if and only if all torsion elements of these groups lie in $\gamma_c(F_c)$.

Our work consists of 3 paragraphs: the first is devoted to the 3-nilpotent varieties, the second to metabelian varieties of "small nilpotency" and the third to some 4-nilpotent varieties.

We use the standard notation for commutators i.e.

$$[x, y] = x^{-1} \cdot y^{-1} \cdot x \cdot y, \quad [x, ky] = [[x, (k-1)y], y] \text{ for } k > 1.$$

Z(G) denotes as usual the centre of G, $\gamma_c(G)$ the c^{th} term of its lower central series. For an arbitrary prime p we define the function $t_p: N \rightarrow N \cup 0$ as follows:

$$t_p(n) = \max \{\alpha : p^{\alpha}|n\}.$$

We assume that the reader is familiar with the book of H. Neumann. Other necessary facts are briefly recapitulated at the beginning of each paragraph.

§ 1. The centres of 3-nilpotent groups

The following theorem gives the full classification of 3-nilpotent varieties i.e. of the varieties with the identity $[x_1, x_2, x_3, x_4] = 1$. All incompletely bracketed commutators are to be read as "left-normed". Theorem: B. Jonsson and V. N. Remes-Lennikov [9], [11].

There is a 1-1 correspondence between the quadruples (m, n, p, q) satisfying the conditions:

- 1) $n \cdot \gcd(2, m) \mid m$,
- p|n
- 3) q|p,
- 4) $q \cdot \gcd(6, m) | m$,
- 5) p|3q,

26 K. Herman

and the 3-nilpotent varieties. In other words every 3-nilpotent variety is given by laws of the form

$$x^m = [x_1, x_2]^n = [x_1, x_2, x_3]^p = [x_1, x_2, x_2]^q = [x_1, x_2, x_3, x_4] = 1$$

with m, n, p, q satisfying the conditions as above.

Using this result we obtain the following

Theorem 1. Let V be a 3-nilpotent variety defined by the quadruple (m, n, p, q). The centre $Z(F_3)$ of a 3-generated relatively free group from this variety coincides with the verbal subgroup given by the words: $x_1^{\beta_1}$, $[x_1, x_2]^{\beta_2}$, $[x_1, x_2, x_3]$ where $\beta_1 = n$, $\beta_2 = p$ except the case when t_2 $n = t_2$, $q \neq 0$. Then $\beta_1 = 2n$ and $\beta_2 = p$.

PROOF. Observe that the centre $Z(F_3)$ is verbal, because it is a fully invariant subgroup of the relatively free group F_3 . Since the quotient group by the centre must lie in a variety of the same type and $\gamma_3(F_3)$ is obviously in $Z(F_3)$, we can assume that the generating words are of the form

$$x_1^{\beta_1}, [x_1, x_2]^{\beta_2}, x_1, x_2, x_3.$$

For $x_1^{\beta_1}$ and $[x_1, x_2]^{\beta_2}$ lying in the centre the following identities must hold in the factor roup $F_3/Z(F_3)$:

(1)
$$1 = [x_1^{\beta_1}, x_2] = [x_1, x_2]^{\beta_1} [x_1, x_2, x_2]^{\binom{\beta_1}{2}}$$
$$1 = [[x_1, x_2]^{\beta_2}, x_3] = [x_1, x_2, x_3]^{\beta_2}.$$

Here we have used the identity:

(2)
$$[x_1, x_2^k] = \prod_{l=1}^k [x_1, lx_2]^{\binom{k}{l}}$$

which holds in every metabelian group and which will be used later. From the Jonsson—Remeslennikov theorem we deduce that β_1 and β_2 must satisfy the following equations:

(3)
$$\beta_{1} = k_{1}n$$

$$\frac{\beta_{1}(\beta_{1}-1)}{2} = k_{2}q$$

$$\beta_{2} = k_{3}p$$

$$k_{4}\beta_{2} = \frac{\beta_{1}(\beta_{1}-1)}{2} .$$

It is not difficult to see that $\beta_1 = n$ and $\beta_2 = p$ is the sought pair except the case when $t_2(n) = t_2(q) \neq 0$. Then we have $\beta_1 = 2n$ and the system (3) is satisfied since $t_2(p) = t_2(q)$ in view of the Jonsson—Remeslennikov theorem.

§ 2. [c-2]-isolated metabelian c-nilpotent varieties and centres of their c-generated relatively free groups

We start with some definitions. Let G be a nilpotent group, H its a subgroup, π a nonempty set of primes. A π -isolator of H is defined as the set $H_{\pi} = \{x \in G : x^m \in H\}$ where m is a π -number i.e. an integer having in its primary decomposition only primes from π . It is known, see HALL [7], that H_{π} is a subgroup of G. If $H = H_{\pi}$ we call the subgroup H π -isolated. If $1 = 1_{\pi}$, which means that in the group G there are no elements having π -numbers as their orders, then we call the group G π -isolated. Let \underline{V} be a variety of groups. If all relatively free groups of \underline{V} are π -isolated, then we call \underline{V} π -isolated too. Now let [c-2] be the set of primes not greater than c-2. The following theorem was announced by Yu. A. Belov [2] without proof. It follows from the results of W. Brisley [3], [4].

Theorem. There is 1-1 corespondence between the varieties of c-nilpotent metabelian groups whose free groups are [c-2]-isolated and c+2-tuples $\alpha_1, \ldots, \alpha_{c+2}$ satisfying the conditions:

- 1) $\alpha_{i+1}|\alpha_i \quad i=1,...,c+1$
- 2) $\alpha_{c-1}|(c-1)\alpha_c$
- 3) $\alpha_c \begin{vmatrix} \alpha_1 \\ c-1 \end{vmatrix}$
- 4) $\alpha_{c+1} | c\alpha_{c+2}$
- 5) $\alpha_{c+2} \begin{pmatrix} \alpha_1 \\ c \end{pmatrix}$.

In other words the basis of such a variety is

$$\begin{aligned} x_1^{\alpha_1} &= [x_1, x_2]^{\alpha_2} = [x_1, x_2, x_3]^{\alpha_3} = \dots = [x_1, \dots, x_{c-1}]^{\alpha_{c-1}} = \\ &= [x_2, (c-2)x_1]^{\alpha_c} = [x_1, \dots, x_c]^{\alpha_{c+1}} = [x_2, (c-1)x_1]^{\alpha_{c+2}} = \\ &= [x_1, x_2, \dots, x_{c+1}] = 1, \end{aligned}$$

with the same conditions as above. The centres of relatively free groups in these varieties are described in the following.

Theorem 2. Let $\underline{\underline{V}}$ be a c-nilpotent metabelian variety defined by a (c+2)-tuple. The centre of a c-generated relatively free group F_c from this variety coincides with the verbal subgroup given by the words:

(4)
$$x_1^{\beta_1}, [x, y]^{\beta_2}, ..., [x, (c-2)y]^{\beta_{c-1}}, [x_1, ..., x_c]$$

where $\beta_1 = \alpha_2$, $\beta_2 = \alpha_3$, ..., $\beta_{c-3} = \alpha_{c-2}$, $\beta_{c-2} = \alpha_{c-1}$, $\beta_{c-1} = \alpha_{c+1}$ except the case when $t_{(c-1)}(\alpha_2) = t_{(c-1)}(\alpha_{c+2}) \neq 0$, then $\beta_1 = (c-1)\alpha_2$, other β_i are as above.

PROOF. First of all observe that if there are elements of order n in an [n-1]-isolated group, then n must be a prime. The factor group $F_c/Z(F_c)$ of a nilpotent group of class c is at most (c-1)-nilpotent. A simple modification of Brisley's con-

28 K. Herman

siderations [3], [4] gives us a basis of identities of a relatively free c-1-nilpotent, metabelian, [c-2]-isolated group in the form:

(5)
$$(x, y)^{\beta_2}, [x, y, y]^{\beta_3}, ..., [x, (c-2)y]^{\beta_{c-1}}, \\ [x, (c-3)y, z]^{\beta_c}.$$

The group $F_c/Z(F_c)$ is also [c-2]-isolated in view of the following result due to P. Hall [7]:

Let G be a locally nilpotent group without nontrivial π -elements (π is an arbitrary set of primes). If C is any centralizer or any term of the upper central series of G, then $C = C_{\pi}$.

On the other hand it follows from the result of GUPTA and NEWMAN ([6] lemma 2) that in a metabelian (c-1)-nilpotent group G, the identity being [c-2]-isolated $[x, (c-3)y, z]^{\beta} = 1$ implies $(\gamma_{c-1}(G))^{\beta} = 1$ i.e. $[x_1, \dots, x_{c-1}]^{\beta} = 1$. So if $[x, (c-2)y]^{\beta_{c-1}}, z = [x, (c-2)y, z]^{\beta_{c-1}} = 1$ then $[x, c-3y, z]^{\beta_c}, t = [x, (c-3)y, z, t]^{\beta_c} = 1$ which implies $\beta_{c-1} = \beta_c$ and consequently we can assume that the words which generate the centre are of the form (4).

We determine now the integers $\beta_1, \ldots, \beta_{c-1}$ in the same manner as in § 1. We have the identities:

(6)
$$1 = [y^{\beta_1}, x] = [y, x]^{\beta_1}[y, x, x]^{\binom{\beta_1}{2}} \dots [y, (c-1)x]^{\binom{\beta_1}{c-1}}$$
$$1 = [[x, y]^{\beta_2}, z] = [x, y, z]^{\beta_2}$$
$$1 = [[x, (c-2)y]^{\beta_{c-1}}, z] = [x, (c-2)y, z]^{\beta_{c-1}}.$$

In the first equality of (6) we have used the identity (2). From (6) we deduce the following system of equations for $\beta_1...\beta_{c-1}$:

 $\beta_1 = k_1 \alpha_2$

$$\frac{\beta_1(\beta_1 - 1)}{2} = k_2 \alpha_3$$

$$\frac{\beta_1(\beta_1 - 1) \dots (\beta_1 - c)}{c - 1} = k_{c-1} \alpha_{c+2}$$

$$\beta_2 = l_1 \alpha_3$$

$$\beta_3 = l_2 \alpha_4$$

$$\beta_{c-1} = l_{c-2} \alpha_{c+1}$$

$$l\beta_{c-1} = \begin{pmatrix} \beta_1 \\ c - 1 \end{pmatrix}.$$

The last equation of the system (7) follows from the condition 3 of Belov's theorem. It is easy to see that the smallest integer satisfying the system is $\beta_1 = \alpha_2$ provided $t_{(c-1)}(\alpha_2) > t_{(c-1)}(\alpha_{c+2})$ or $t_{(c-1)}(\alpha_2) = t_{(c-1)}(\alpha_{c+2}) = 0$. If $t_{(c-1)}(\alpha_2) = t_{(c-1)}(\alpha_{c+2}) \neq 0$ we take $\beta_1 = (c-1)\alpha_2$. The last equation of the system (7) is fulfilled in both cases because $t_{(c-1)}(\alpha_{c+1}) = t_{(c-1)}(\alpha_{c+2})$ in view of 5 of Belov's theorem. Clearly we have $\beta_2 = \alpha_3...\beta_{c-1} = \alpha_{c+1}$ and the proof is complete.

§ 3. The centres of 4-generated, relatively free groups of class four

The varieties of class at most four were fully described in the papers of P. FITZ-PATRICK and L. G. KOVACS. They have proved that the problem reduces to two cases: varieties whose free groups have no elements of order 2 and varieties whose free groups have no elements of odd order. Now we shall consider the first case i.e. (see [2]) isolated relatively free 4-nilpotent groups.

Theorem (FITZPATRICK and KOVACS [5]). There is a 1-1 correspondence between 2-isolated 4-nilpotent varieties and the 6-tuples (a, b, c, d, e, f), satisfying the conditions: b|a, d|c, c|b, c|3d, d being a common multiple of e and f, and if 3|a then 3d|a. a, b, ..., f are natural numbers or 0.

The basis of laws of such a variety is:

$$x^{a} = [x, y]^{b} = [x, y, z]^{c} = [x, y, y]^{d} = [x, y, y, x]^{e} = [[x, y], [z, t]]^{f} =$$

$$= [x, y, z, t]^{ef} = [x, y, z, t, u] = 1.$$

Now we prove the following

Lemma. In the varieties described above the following identities

(8)
$$[x, y, y, y]^e = 1$$

(9)
$$[x, y, y, z]^{\delta} = 1$$

hold with e and δ being minimal and $\delta = ef$ or $=\frac{1ef}{3}$ when 3|f.

PROOF. By the substitution xy for x in $[x, y, y, x]^e = 1$ we have $[x, y, y, y]^e$ $[x, y, y, x]^e = 1$ which implies $[x, y, y, y]^e = 1$. Suppose now $[x, y, y, y]^m = 1$. By substituting xy for y we obtain $[x, y, y, x]^m [x, y, x, y]^m = 1$. Now using the equation [x, y, z, t] = [x, y, t, z][[x, y], [z, t]] holding in every group with commuting commutators of weight ≥ 3 we have $[x, y, y, x]^{2m} = so$, for lack of elements of even order we get $[x, y, y, x]^m = 1$ and thus $m \ge c$, which ends the proof of (8). To prove (9) observe that the fact $[x, y, y, z]^{\delta} = 1$ with δ -minimal implies $\delta = ef$ or $\delta = \frac{1}{3}ef$ follows from

30 K. Herman

the proof of the theorem of Heineken (see HUPPERT [8] III 6, 9). Let now V denote the verbal subgroup generated by the word [x, y, y, z]. We prove that $V \cap F'' = F^3$, where F is a relatively free 4-generated group from a variety under consideration. Indeed

(10)
$$1 = [x, y, y, z] = [z, x, y, y][[x, y], [y, z]].$$

On the other hand, using the Jacobi identity for [x, y, z, y] we have

(11)
$$1 = [x, z, y, y,][z, y, x, y][[x, y], [y, z]].$$

Multiplying (11) by (10) in the square we obtain

$$[[x, y], [y, z]]^3 = 1.$$

MAC DONALD [10] has shown that the commutator [[x, y], [y, z]] generates verbally the second derived subgroup in a group without elements of even order.

On the other hand from (10) follows that the verbal subgroups generated by the commutators [z, x, y, y] and [[x, y], [y, z]] are equal modulo V. So the above mentioned result of Heineken makes $F'' \subset V$ impossible.

So if 3|f then $[x, y, y, z]^{\frac{ef}{3}} = 1$.

Now we can prove the main theorem concerning the description of 4-generated relatively free 2-isolated 4-nilpotent groups.

Theorem 3. The centres of 4-nilpotent 2-isolated relatively free groups on four letters coincide with the verbal subgroups given by the words:

$$x^{\beta_1}$$
, $[x, y]^{\beta_2}$, $[x, y, z]^{\beta_3}$, $[x, y, y]^{\beta_4}$, $[x, y, z, t]$

with $\beta_1=b$ except the case when $t_3(b)=t_3(e)\neq 0$ or $t_3(b)=t_3(ef)\neq 0$ and 3|f, then $\beta_1=3b\cdot\beta_2=c$ $\beta_3=ef$ and $\beta_4=ef$ except the case when 3|f, then $\beta_4=\frac{1}{3}ef$.

PROOF. As in § 2 we observe that the factor group $F_4|Z(F_4)$ is [2]-isolated in view of Hall's cited lemma. Leter we shall use the same arguments as in preceding paragraphs. There are identities:

$$1 = [x, y]^{\beta_1} [x, y, y]^{\binom{\beta_1}{2}} [x, y, y, y]^{\binom{\beta_1}{3}}$$

$$1 = [x, y, z]^{\beta_2}$$

$$1 = [x, y, z, t]^{\beta_3}$$

$$1 = [x, y, y, z]^{\beta_4}$$

which imply the system of equations:

$$\beta_{1} = k_{1}b$$

$$\frac{\beta_{1}(\beta_{1}-1)}{2} = k_{2}d$$

$$\frac{\beta_{1}(\beta_{1}-1)(\beta_{1}-2)}{2\cdot 3} = k_{3}e$$

$$\beta_{2} = k_{u}c$$

$$\beta_{3} = k_{5}ef$$

$$\beta_{4} = k_{6}ef$$
or
$$\beta_{4} = k_{6}ef$$

in the case if 3|f.

We can observe that the minimal natural numbers satisfying this system are as in theorem 3. So the proof is complete.

Corollary. In the considered c-nilpotent varieties c-generated relatively free groups F_c have centers equal to $\gamma_c(F_c)$ if and only if all torsion elements lie in $\gamma_c(F_c)$.

References

- [1] HANNA NEUMANN, Varieties of Groups. Springer Verlag. 1967.
- [2] Yu. A. Belov, On some lattices of metabelian nilpotent varieties of group. Uspekhi Mat. Nauk (Russian) XXVII (1972) 227—228.
- [3] W. Brisley, On varieties of metabelian p-groups and their laws. J. Australian Math. Soc. 7 (1967) 64—80.
- [4] W. Brisley, Varieties of metabelian groups of class p. p+1. J. Australian Math. Soc. 12 (1971) 53-62.
- [5] P. FITZPATRICK and L. G. Kovacs, Varieties of nilpotent groups of class four. J. Australian Math. Soc. Series A 35 (1983) 59—73.
- [6] N. GUPTA, M. NEWMAN, On metabelian groups. J. Australian Math. Soc. 6 (1966) 362—368. [7] P. Hall, Nilpotent groups. Canadian mathematical congress, summer seminar. University of
- [8] B. HUPPERT, Endliche Gruppen. Springer Verlag. 1967.
- [9] B. Jonsson, Varieties of groups of nilpotency three. Notices Amer. Math. Soc., 13 (1966) 488.
- [10] J. D. Mac Donald, On certain varieties of groups. Math. Zeitschrift., 76 (1961) 270-282.
- [11] V. N. Remeslennikov, Two remarks on 3-step nilpotent groups (Russian) Algebra i Logika Sem. (1965) N°. 2, 59—65.

KRZYSZTOF HERMAN INSTITUT MATEMATYKI POLITECHNIKA ŚLĄSKA 44—100 GLIWICE UL ZWYCIĘSTWA 42

(Received July 4, 1986)