Some remarks on the twelfth problem of Hanna Neumann

By KRZYSZTOF HERMAN (Gliwice)

Introduction

In this paper we give a partial answer to the twelfth problem of HANNA NEuU-
MANN from her book [1]. Namely we prove that the centres of c-generated, c-nilpotent
relatively free groups F, of some varieties are equal to the last term of their lower
central series y.(F,) if and only if all torsion elements of these groups lie in y.(F,).

Our work consists of 3 paragraphs : the first is devoted to the 3-nilpotent varieties,
the second to metabelian varieties of “small nilpotency” and the third to some 4-nil-
potent varieties.

We use the standard notation for commutators i.e.

[x, y]=x"1-ytex-p, [x,kyl=[lx,(k=1)y),y] for k=1,
Z(G) denotes as usual the centre of G, y.(G) the ¢ term of its lower central series.
For an arbitrary prime p we define the function 7,: N—~NUO as follows:

t,(n) = max {a: p*|n}.

We assume that the reader is familiar with the book of H. Neumann. Other necessary
facts are briefly recapitulated at the begining of each paragraph.

§ 1. The centres of 3-nilpotent groups

The following theorem gives the full classification of 3-nilpotent varieties i.e. of
the varieties with the identity [x,, x,, x3, x,]J=1. All incompletely bracketed com-
mutators are to be read as “left-normed”. Theorem: B. JonNssoN and V. N. REMES-
LENNIKOV [9], [11].

There is a 1—1 correspondence between the quadruples (m,n, p, q) satisfying
the conditions:

1) n-ged (2, m)im,
2) pln,

3) 4lp,
4) gq-ged (6, m)|m,

5) pl3q,
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and the 3-nilpotent varieties. In other words every 3-nilpotent variety is given by
laws of the form

X" =[xy, Xo]" = [X1, X3, X3]° = [X1, X2, Xa]? = [x1, X2, X3, X4] = 1

with m, n, p, ¢ satisfying the conditions as above.
Using this result we obtain the following

Theorem 1. Let V be a 3-nilpotent variety defined by the quadruple (m,n, p, q).
The centre Z(F;) of a 3-generated relatively free group from this variety coincides with
the verbal subgroup given by the words: x{', [xy, X)), [x1, Xy, X3] where py=n,
Ba=p except the case when t, n=t,, q#0. Then B,=2n and B,=p.

PROOF. Observe that the centre Z(F;) is verbal, because it is a fully invariant
subgroup of the relatively free group F;. Since the quotient group by the centre
must lie in a variety of the same type and y,(F,) is obviously in Z(Fj), we can assume
that the generating words are of the form

x{l L] [xl! x!]ﬂ‘s X34 Xg, X3.

For xf1 and [x,, x,]’: lying in the centre the following identities must hold in the
factor roup F/Z(F;):

1 = [xf2, xo] = [x1, Xo)s[x1, Xa, xg](gl)

1= [[xu XqPt, x:i] = [x1, x3, X;]s.

)
Here we have used the identity:

7 ()
(2) [x;, x§] = IH [x1, Ix,]M

which holds in every metabelian group and which will be used later. From the Jons-
son—Remeslennikov theorem we deduce that f, and f, must satisfy the following
equations: Pas ae ;

By = kn
© 5O g
B2 = kyp
_ Bu(Bi—1)
keBs = . e

It is not difficult to see that f,=n and f,=p is the sought pair except the case when
t,(n)=1t3(q)#0. Then we have f;=2n and the system (3) is satisfied since 1#,(p)=
=1,(g) in view of the Jonsson—Remeslennikov theorem.
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§ 2. [c —2]-isolated metabelian c-nilpotent varieties
and centres of their c-generated relatively free groups

We start with some definitions. Let G be a nilpotent group, H its a subgroup,
n a nonempty set of primes. A n-isolator of H is defined as the set H, = {x€G: x"€ H}
where mis a r-number i.e. an integer having in its primary decomposition only primes
from =. It is known, see HALL [7], that H, is a subgroup of G. If H=H, we call the
subgroup H m-isolated. If 1=1,, which means that in the group G there are no ele-
ments having n-numbers as their orders, then we call the group G n-isolated. Let
V be a variety of groups. If all relatively free groups of ¥ are n-isolated, then we

call V m-isolated too. Now let [c—2] be the set of primes not greater than ¢—2. The

following theorem was announced by Yu. A. BELov [2] without proof. It follows from
the results of W. BrisLEy [3], [4].

Theorem. There is 1—1 corespondence between the varieties of c-nilpotent meta-
belian groups whose free groups are [c—2)-isolated and c+2-tuples oy, ..., 0. 44
satisfying the conditions:

1) a{_i,llai i= 1, ...,C+l
2) a.yl(c—1a,
0y
" [c—l
4) oyl
0y
Py L

In other words the basis of such a variety is

3)

5) a4

X9 =%y, %3] = [%1, X5 %o} =.ce= [Xg, eep Xp o1 =
= [xzs(C—Z)xllﬂc = [xl, P xc]"“ = [xz, (c—l)xl)"cﬂ e
=[xy, Xpy co0s Xegal = 1,

with the same conditions as above. The centres of relatively free groups in these vari-
cties are described in the following.

Theorem 2. Let V be a c-nilpotent metabelian variety defined by a (c + 2)-tuple.

The centre of a c-generated relatively free group F, from this variety coincides with the
verbal subgroup given by the words:

4) xf, [x, y1s, ... [x, (e =2) yPPe-s, [x4, ...y x.]

where By=0y, Py=03, ..., B._3=%_3, Bc—2=0_y, PB._1=0.4, except the case
when t.—qy(0t) =t—1)(%c+2)7#0, then By=(c—1)a,, other p; are as above.

Proor. First of all observe that if there are elements of order n in an [n—1]-
isolated group, then n must be a prime. The factor group F./Z(F,) of a nilpotent
group of class ¢ is at most (c— 1)-nilpotent. A simple modification of Brisley’s con-
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siderations [3], [4] gives us a basis of identities of a relatively free ¢— l-nilpotent,
metabelian, [c—2]-isolated group in the form:

xﬂ,’ [x9 y]"s [x$ Vs y]"9 vesy [x’ (C—2)y]""|,
(5) [x, (c=3)y, z]F-.

The group F,/Z(F,) is also [c—2]-isolated in view of the following result due to
P. HALL [7):

Let G be a locally nilpotent group without nontrivial n-elements (= is an arbitrary
set of primes). If C is any centralizer or any term of the upper central series of G,
then C=C,.

On the other hand it follows from the result of GuPTA and NEwWMAN
([6] lemma 2) that in a metabelian (c—1)-nilpotent group G, the identity
being [c—2]-isolated [x, (c—3)y, zJ#=1 implies (y.-1(G))f =1 i.e. [x;, ..., X._ P =1.
So if [[x,(c—2)yPe-r, z] =[x, (c—2)y, zfe-1=1 then [[x, c—3y, 2P, 1] =
=[x, (¢c—3)y, z, 1]f-=1 which implies B._,=p. and consequently we can assume
that the words which generate the centre are of the form (4).

We determine now the integers f,, ..., f._; in the same manner as in § 1.

We have the identities :

I = [yf, x] = [y, x]% [, x, x](g').‘.[y, (c— l)x](gi-l)

(6) 1 =[x, y#, 2] =[x, y, 2}

1 =[x, (c=2)yP:-1, 2] = [x, (c—2)y, zJPe-1.

In the first equality of (6) we have used the identity (2). From (6) we deduce the fol-
lowing system of equations for f,...f._,:

B = kyota
AO-D) _,,,

ﬁl(ﬁl ~1)...(B—¢) =

C—l kc-—l“c+‘.!
(7)
P = Loy
Bs = Loy

Beo1=l._2% 41

= (P)-
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The last equation of the system (7) follows from the condition 3 of Belov’s theorem.
It is easy to see that the smallest integer satisfying the system is f,=a,
provided f(o—1)(%)=>(c-1)(%c+2) O fc—1)(®)=l(c—1)(%c+2)=0. If 1 _1y(a)=
=1(e-1)(%+2)#0 we take B, =(c—1)a,. The last equation of the system (7) is ful-
filled in both cases because #(._1)(%+1)=?-1)(%+2) in view of 5 of Belov’s theorem.
Clearly we have f,=uy...f._,=uo.,, and the proof is complete.

§ 3. The centres of 4-generated, relatively free groups of class four

The varieties of class at most four were fully described in the papers of P. Firz-
PATRICK and L. G. Kovacs. They have proved that the problem reduces to two cases:
varieties whose free groups have no elements of order 2 and varieties whose free
groups have no elements of odd order. Now we shall consider the first case i.e.
(see [2]) isolated relatively free 4-nilpotent groups.

Theorem (FirzrATRICK and KoOVACS [5]). There is a 1 —1 correspondence between
2-isolated 4-nilpotent varieties and the 6-tuples (a, b, c,d, e, f), satisfying the condi-
tions: bla, d|c, c|b, ¢|3d, d being a common multiple of e and f, and if 3|a then 3d|a.
a, b, ..., [ are natural numbers or 0.

The basis of laws of such a variety is:
*=kyP=0ky=kyy=0kyynx=[kxylz1)=
=[xy,207=[xy2tul=1.
Now we prove the following

Lemma. In the varieties described above the following identities

(8) [x,}‘,y,y]'= 1

® x»»zPl=1

hold with e and & being minimal and 6 = ef or =1—;'{- when 3| 1.

ProOOF. By the substitution xy for x in [x, y, y, x]°=1 we have [x,y,y, y]
[x, y, ¥, x]°=1 which implies [x,y, y,y]°=1. Suppose now [x, y, y,y]"=1. By
substituting xy for y we obtain [x, y, y, x]"[x, », x, y]"=1. Now using the equation
[x, y, z, t]=[x, y, t, z1[[x, y]. [z, t]] holding in every group with commuting commu-
tators of weight =3 we have [x, y, y, x]*" = so, for lack of elements of even order we
get [x, ¥, y, x]"=1 and thus m=¢, which ends the proof of (8). To prove (9) observe

that the fact [x, y, y, z]°=1 with -minimal implies J=ef or 6:% ef follows from
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the proof of the theorem of Heineken (see HupperT [8] III 6, 9). Let now V' denote
the verbal subgroup generated by the word [x, y, y, z. We prove that V(N F"=
where F is a relatively free 4-generated group from a variety under consideration.
Indeed

(10) 1 =[x, y, » 2] = [z, x, y, ¥[[x, ¥), [, 2]].

On the other hand, using the Jacobi identity for [x, y, z, y] we have

(ll) 1= [xs z, ), ysllz’y! x’y][[x’y]’ [)’, 2]]

Multiplying (11) by (10) in the square we obtain
[[x! L[y, 2]]3 =1

Mac DonALD [10] has shown that the commutator [[x, y], [y, z]] generates
verbally the second derived subgroup in a group without elements of even order.

On the other hand from (10) follows that the verbal subgroups generated by the
commutators [z, x, y, y] and [[x, y], [y, z]] are equal modulo V. So the above mentio-

ned result of Heineken makes F”c ¥V impossible.
ef

So if 3| f then [x, y, y, 7] % =1.
Now we can prove the main theorem concerning the description of 4-generated
relatively free 2-isolated 4-nilpotent groups.

Theorem 3. The centres of 4-nilpotent 2-isolated relatively free groups on four
letters coincide with the verbal subgroups given by the words:

xh, [x, yJts, [x, y, z)%, [x, y, yVs, [x, 3, 2, 1]

with f,=b except the case when #;(b)=13(e)#0 or t3(b)=t3(ef )0 and 3|,
then B,=3b-p,=c Ps=ef and P,=ef except the case when 3| f, then ﬁ‘=% ef.

PRrOOF. As in § 2 we observe that the factor group Fy|Z(F,) is [2]-1so]ated in view
of Hall’s cited lemma. Leter we shall use the same arguments as in preceding para-
graphs. There are identities :

1 =[x, y]’-[x, Vs y](ﬁgl) [x, Ys Vs y](ﬂal)
1 =[x, y, z]f
=[x, z1h

1 =[x, y, 5, 2%
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which imply the system of equations :

ﬂl =k b
ﬁl(ﬂé_l) LS kgd

1) BG-DG-D)

ﬂs == karc

Bs = ksef

By = keef
or

b=k

in the case if 3| f.
We can observe that the minimal natural numbers satisfying this system are as
in theorem 3. So the proof is complete.

Corollary. In the considered c-nilpotent varieties c-generated relatively free
groups F, have centers equal to y.(F,) if and only if all torsion elements lie in y.(F,).
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