A theorem of Sjogren and Hartley on dimension subgroups

By NARAIN GUPTA* (Winnipeg, Canada)

In this note we give a direct proof of a generalized version of a result due to SJOGREN [5] and HARTLEY [4], and point out a far reaching application. Let $H==H_1 \ge H_2 \ge ...$ and $K=K_1 \ge K_2 \ge ...$ be series of normal subgroups of a group F and let $\{D_{k,l}; 1 \le k < l\}$ be a family of normal subgroups of F such that (a) $D_{k,k+1} = H_k \cdot K_{k+1}$, (b) $H_k \cdot K_l \le D_{k,l}$ and (c) $D_{k,l+1} \le D_{k,l}$ for all k < l. We prove the following theorem whose foundation lies in [5] and [4].

Theorem A. For each $2 \le k + m \le n + 1$, $k, m, n \ge 1$, let there exist a positive integer a(k), depending only on k and n, such that $(K_{k+m} \cap D_{k,k+m+1})^{a(k)} \le D_{k+1,k+m+1} \cdot H_k$. Then $(D_{1,n+2})^{a(1,n+1)} \le H_1 \cdot K_{n+2}$, where $a(1,n+1) = a(1)^{\binom{n}{1}} \dots a(n)^{\binom{n}{n}}$.

PROOF. We prove by induction on $1 \le m \le n$, that $(D_{k,k+m+1})^{a(k,m+1)} \le H_k \cdot K_{k+m+1}$, where $a(k,m+1) = a(k)^{\binom{m}{1}} \dots a(k+m-1)^{\binom{m}{m}}$; the proof of the theorem then follows with k=1,m=n. When m=1, we have $D_{k,k+2} \le D_{k,k+1} = H_k \cdot K_{k+1}$ and it follows that $D_{k,k+2} \le H_k \cdot K_{k+1} \cap D_{k,k+2} \le (K_{k+1} \cap D_{k,k+2}) \cdot H_k$, since $H_k \le D_{k,k+2}$. Thus by the given hypothesis $(D_{k,k+2})^{a(k)} \le D_{k+1,k+2} \cdot H_k = H_{k+1} \cdot K_{k+2} \cdot H_k = H_k \cdot K_{k+2}$ as required since a(k) = a(k,2). For the inductive step, let $m \ge 2$ and assume the result for m-1. Then we have $D_{k,k+m+1} \le D_{k,k+(m-1)+1}$ and the induction hypothesis yields $(D_{k,k+m+1})^{a(k,m)} \le H_k \cdot K_{k+m} \cap D_{k,k+m+1} \le (K_{k+m} \cap D_{k,k+m+1}) \cdot H_k$, since $H_k \le D_{k,k+m+1}$. By the given hypothesis it now follows that $(D_{k,k+m+1})^{a(k,m) \cdot a(k)} \le (K_{k+m} \cap D_{k,k+m+1})^{a(k)} \cdot H_k \le D_{k+1,k+m+1} \cdot H_k$. On the other hand, $D_{k+1,k+m+1} = D_{k+1,k+1+m}$ gives, by the induction hypothesis,

$$(D_{k+1,k+m+1})^{a(k+1,m)} \leq H_{k+1} \cdot H_{k+m+1}$$
.

This yields, in turn,

$$(D_{k,k+m+1})^{a(k,m)\cdot a(k)\cdot a(k+1,m)} \leq H_k \cdot K_{k+m+1}.$$

It only remains to verify that $a(k, m+1) = a(k, m) \cdot a(k) \cdot a(k+1, m)$. Indeed, we have

$$a(k, m) = a(k)^{\binom{m-1}{1}} \dots a(k+m-2)^{\binom{m-1}{m-1}}$$

and

$$a(k+1, m) = a(k+1)^{\binom{m-1}{1}} \dots a(k+1+m-2)^{\binom{m-1}{m-1}}.$$

^{*} Killam Fellow

Thus

$$a(k, m) \cdot a(k) \cdot a(k+1, m) =$$

$$= a(k)^{\binom{m-1}{0} + \binom{m-1}{1}} a(k+1)^{\binom{m-1}{1} + \binom{m-1}{2}} \dots a(k+m-2)^{\binom{m-1}{m-2} + \binom{m-1}{m-1}} a(k+m-1) =$$

$$= a(k)^{\binom{m}{1}} a(k+1)^{\binom{m}{2}} \dots a(k+m-2)^{\binom{m}{m-1}} a(k+m-1)^{\binom{m}{m}} =$$

$$= a(k, m+1).$$

An application. Let G=F/RF'' be a finitely generated metabelian group with F/RF' finite. Let $\mathbf{f} = \mathbf{Z}F(F-1)$ be the augmentation ideal of the free group ring $\mathbf{Z}F$. Define $\mathbf{r}(1) = \mathbf{r} = \mathbf{Z}F(R-1)$ and for $k \ge 2$, $\mathbf{r}(k) = \sum_{i+j=k-1} \mathbf{f}^i \mathbf{r} \mathbf{f}^j$, $i, j \ge 0$. Also, define R(1) = R, R(k) = [R(k-1), F], $k \ge 2$. Let $\mathbf{a} = \mathbf{Z}F(F'-1)$ and set $D(k, l) = F \cap (1+\mathbf{r}(k)+\mathbf{a}^2+\mathbf{f}^l)$ for all $1 \le k < l$. It is easy to prove that $D(k, k+1) = R(k) \cdot F'' \cdot \gamma_{k+1}(F)$. Thus, with $H_k = R(k) \cdot F''$, $K_l = \gamma_l(F)$ and $D_{k,l} = D(k, l)$, the family $\{D(k, l); 1 \le k < l\}$, of normal subgroups of F, satisfies the conditions (a), (b) and (c) stated earlier. Let G be a finitely generated metabelian p-group and let $n \le 2p-3$. Then, for a suitable free presentation $1 \rightarrow RF'' \rightarrow F \rightarrow G \rightarrow 1$ of G, by a delicate blend of techniques from CLIFF—HARTLEY [1] and GUPTA [2] it is possible to choose a(k) = k! for $k = 1, \ldots, p-1$ and a(k) = (n-k+2)! for $k = p, \ldots, n+1$ such that $(\gamma_{k+m}(F) \cap D(k, k+m+1))^{a(k)} \le D(k+1, k+m+1) \cdot R(K) \cdot F''$. It follows by Theorem A that $(D(1, n+2))^{a(1,n+1)} \le R \cdot F'' \cdot \gamma_{n+2}(F)$, where $a(1, n+1) = a(1)^{\binom{n}{1}} \ldots a(n)^{\binom{n}{n}}$ is coprime to p. Thus $F \cap (1+\mathbf{r}+\mathbf{a}^2+\mathbf{f}^{n+2}) \le R \cdot F'' \cdot \gamma_{n+2}(F)$ and consequently we have the following important result,

Theorem B. Let G be a finite metabelian p-group. Then for $n \le 2p-1$ the n-th dimension subgroup $D_n(G)$ coincides with the n-th lower central subgroup $\gamma_n(G)$.

[Details will be published elsewhere. The earlier best-known results in this direction are: $D_n(G) = \gamma_n(G)$ for $n \le p+2$, p odd (Gupta—Tahara [3]), and for arbitrary p-groups $D_n(G) = \gamma_n(G)$ for $n \le p+1$ (Sjogren [5])].

References

- [1] G. CLIFF and B. HARTLEY, Sjogren's theorem on dimension subgroups. J. Pure Appl. Algebra 47 (1987), 231—242.
- [2] NARAIN GUPTA, Sjogren's theorem for dimension subgroups the metabelian case, Annals of Math. Study. 111 (1989), 197—211.
- [3] NARAIN GUPTA and KEN-ICHI TAHARA, Dimension and lower central subgroups of metabélian p-groups. Nagoya Math. J. 100 (1985), 127—133.
- [4] B. HARTLEY, Dimension and lower central subgroups Sjogren's Theorem revisited. Lecture Notes 9 (1982), Nat. Univ. of Singapore.
- [5] J. A. SJOGREN, Dimension and lower central subgroups. J. Pure Appl. Algebra 14 (1979), 175— 194.

UNIVERSITY OF MANITOBA WINNIPEG R3T 2N2 CANADA

(Received July 5, 1986)