Weak convergence of sequences of random elements
with multidimensional random indices

By Z. A. LAGODOWSKI and Z. RYCHLIK (Lublin)

Conditions are given for a randomly indexed sequence of random variables with
multidimensional indices to converge weakly. We extend limit theorems with random
indices to random fields. Functional central limit theorems with random multidimen-
sional indices are also presented.

1. Introduction

Let Z9 where d=1 is an integer, denote the positive integer d-dimensional
lattice points. The points in Z¢ will be denoted by m, n, etc., or sometimes, when
necessary, more explicitly, by (my, my, ..., my), (n, ..., ny), etc. The set Z¢is par-
tially ordered by stlpulatmg m=n iff m;=n; foreach i, 1=i=d. We write 0 and 1
for the points (0,0, ..., 0) and (1, 1, ..., 1) in Z9 respectively, and m<n iff m<n;,
1=i=d.

Let (S, d) be a separable metric space equipped with its Borel o-field #. Let
{Y,,n€Z*} be a random field, i.e., a collection of S-valued random elements defined
on a probability space (Q, <, P).

Let {N,,ncZ% be a set of Z¢ -valued random variables defined on the same
probability space (Q, o, P), i.e., for every n€Z¢ the N,=(N®,N®, ..., N9),
where N, 1=i=d, are positive integer — valued random variables.

If n=(n,, ny, ..., ny), let |n| stand for the product n,n,...n;. In this paper the
limit n— e will mean 11;1‘21‘ n;— oo,

Assume that Y,-2-~ Y, as n-— oo, converges weakly to an S-valued random
element Y with the distribution u. This paper is aimed at presenting conditions on
{Y,,n€Z% and {N,,n€Z%} for Yy <. i to hold, in the case where no assumption
concerning the interdependence between {Y,, n€Z%} and {N,,n€Z?} is made.

We extend ALpous’ results [1] to nonstationary random fields. The basic results
are given in Theorems 1, 2 and 4. The presented results extend also the main theo-
rems given in [3], [5], [6], [8] and [9].

Weak convergence of random fields has been studied by many authors. Situa-
tions in which such convergence arises can be found, for example, in [6]. Applications
of random fields can also be found in biological investigations, in problems involving
propagation of electromagnetic waves through random media and in the theory of
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turbulance. Random fields such as multiparameter stochastic processes, which we
study in Section 3, play a prominent role in weak convergence of empirical processes.
On the other hand, the theorems presented in Section 2 can be very useful in sequen-
tial analysis.

2. Extensions of Aldous’ theorems to random fields

Let {k,, n€Z?} be a collection of positive numbers such that k,—ece as n-—ee.

We assume that {k,, n€Z%} is non-decreasing in the sense that for every n, meZ9,
k,=k, provided n=m.

Definition 1. A random field {Y,, n€Z% is said to satisfy the generalized Ans-
combe condition with norming family {k,, n€Z‘} of positive numbers if for every
e=>0 there exists =0 such that

- oo

(1 lim sup P(lmf();) dY,,Y,)=¢e) =g,

where D,(8) = {i€Z?; |k;—k,| = ok,}.

We note that in the case d=1 the concept of norming sequence and the genera-
lized Anscombe condition have been introduced in [8].

Theorem 1. Let {Y,,ncZ%} be a random field. The following conditions are equi-
valent:
(i) {Y,,n€Z% satisfies the generalized Anscombe condition with {k,, n€Z%} and
Yn—g«- # as n—-oo;
(i) Yy, 2., as n>o, for every random field {N,,n¢Z%} such that

) ky ke, —=+1 as n—eo
for some family {a,:n€Z%} such that a,cZ* and a,~ < as n—oo.

Proor. The implication (i)=(ii) can be proved similarly as that given in Propo-
sition 1 [1]. On the other hand in the proof (ii)=(i) we can also follow the ideas
presented in the proof of Proposition 1 [1], but in this case we need a total order rela-
tion in the set Z“ in order to introduce stopping random variables. Of course, the
total order relation *“<” can be defined as follows. Let n=(n,, ..., n)<m=
=(my, ..., my) mean that Zn=m+...+n<m+..+my=Zm or In=Zm and
ny=>m, or In=Xm and n,=m, and ny>m, or ... or In=Xm and n,=m, and

ng=my and ... and my_o=my_, and ny_,>my_, or n=m. Thus we omit further
details.

Remark. Let us observe that in Theorem 1 it is not enough, in general, to assume
k,~<> as n—<o instead of k,—~< as |n|—<o, since under the assumption k,- <o
as n—< theset D,(J)can be unbounded. To see this let us take k,=min (ny, ..., n,),
where n=(n,, ..., n;). On the other hand if in (1), (i) and (2) the limit n—+ < means
|n| ===, then (ii) also holds in this sense.

As an example of an application of Theorem 1 we have the following.
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Corollary. Let {X,,n€Z% be a collection of independent random variables
such that EX,=0 and 0<ES,=Bj<<e, ncZ% where S,= 3 X,. Assume

1=k=n
B, <= as n—<o, Then the following conditions are equivalent:

(3) S/B,~~pu as n-— <
4) Sy/By, 2>y as n— oo

for every random field {N,,n€Z% such that B} /B2 £+ 1 as n—oo for some family
{a,, n€Z*} such that a,cZ° and a,~<> as n—oo.

Proor. Letk,=B2, ncZ®. Then, for every ¢=>0 and 6=>0, we have

P(l max ISJBI'_SIJ-Bul = 8) =

€D,(8)
= P(IS,| = &B,(1-0)"2/28)+ P(_ max |S;—S,| = e(l —6)\2B,[2) =

= 40%/e*(1 —5)+P(ienll)a(§) |S;—S,| = (1 —8)"2B,/2).

Now using Theorem 1 [12], and the above inequalities, we can easily prove that
{S,/B,, n€ Z%} satisfies the generalized Anscombe condition with norming family
{B:, n€ Z*}. Thus the Corollary follows from Theorem 1.

Let {Y,,n€Z% be an S-valued random field defined on a probability space
(Q, o, P). For Besof, let Py be the restriction measure defined by the equality
Pg(A)=P(ANB), Acsl, and let Ey denote expectation with respect to Pg. If
Y, 2~ u and for each BE o there exists a measure pg such that for every continuous
and bounded real function f defined on S

(3) Egf(Y)~ [fdup as n— e,

then we will write ¥, -2~ u (stably) (cf. [1]). In the special case when ug=u(-)P(B)
for all Besf we write Y, = u (mixing) (cf. [2], [11]).

Let us observe that if in Theorem 1 ¥,-Z+ u (stably), then Yy, 2. u (stably),
since if (1) holds then, for every B€.sZ with P(B)=0, (1)also holds with the measure
Pg(.)/P(B). The same is true in the case Y,L p (mixing).

Let {k,,n€Z% be a collection of positive numbers such that k,— < as n- o,
We assume that n=m implies k,=k,,, n, mcZ*

Let {N,,ncZ% be a set of Z%valued random variables.

Definition 2. A random field {N,, n€Z% is said to satisfy the condition (A)
with norming family {k,,n€Z?} if for every ¢>0 and 6=>0 there exists a finite
and measurable partition {4,, ..., Ay} of Q and a,,JEZ", 1=j=M, ncZ* such
that @, -+ as n—+< and

M
(6) limsup > P, (Iky,—Ka, | > 0ka, ) = &.
n—-ece Jj=1 J |

We would like to note that the condition ( A) is a d-dimensional version of the
condition (3.4) [1].
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Theorem 2. Assume Y,-=» pu (stably). If for every e>0 there exists 6 >0
such that for every A€sd

) hT..s.Ep P, (‘ max d(Y;,Y,) =¢) = eP(A),

then Yy, 2. u for every random field {N,,ncZ%} satisfying the condition ( 1).

THE PROOF OF THEOREM 2 is similar to that of Proposition 5 [1], so we omit the
details.

Let us observe that in Theorem 2, in general, we may not assume Y, -2+ u as
n— o instead of ¥,-Z» u (stably) as n— e, since we have the following.

Theorem 3. Assume YHR—g-- U as n—oo for every random field {N,,ncZ%)
satisfying the condition ( A). Then Y, 2+ u (stably) as n— .

Theorem 3 can be proved analogously as Lemma 4 [1].

3. Random functional limit theorems

Let T denote the interval [0, =) and T} the d-fold Cartesian product of T. Let
D,4[0, =) denote the space of real functions defined on 7,, which are “‘continuous
from above, with limits from below™ (cf. [6], [7] and [10]). We consider the space
D,[0, =) with the metric p introduced in [10], therefore (D,[0, =), g) is a complete
separable metric space.

Let ¢=(q,,-.-+q4), where O<g,<oo, 1=i=d. For a given fixed O<a<-oo
define F,: D4[0, e=)—+D,[0, =) by Fox(t)=|q|l *x(qsty, ..., gata)- It is easily seen
that the map (g, x)—~ F,x is jointly continuous.

Let Z=Z(t), t€T,, be arandom element of D,[0, =) and let k,=(k{", ..., k{?9),
n€Z? be a collection of d-dimensional vectors such that k{"=0, 1=i=d. We

d
assume that |k,|= J] k{? ~o as n—c and n=m implies |k, =|k,|. In what

i=1
follows for t=(t,, ..., #;) and k,=(k®, ..., k) we write tk, for (t,kD, ...,1,kP)
and k,k, for (KM/kD, ..., k@ kW).
For some fixed O0<a< < and every 1=(t,, ..., t;)€ T, define

(8) Y,(0) = |k ~*Z(tk,), neZ-.

Let us observe that the partial sum processes considered in [6], [9] and [5] are special

cases of (8). Namely, it is enough to take Z(7)= 3 X, where X, kcZ® is some
k=t

underlying family of random variables.

Theorem 4. Let {Y,,ncZ} be a family of D40, «)-valued random elements
defined by (8). Then the following conditions are equivalent

(i) Y, = u (stably);

(ii) YN”—Q*- p for every set {N,,n€Z%} of Z%valued random variables satisfying
the condition ( A) with the norming family {|k,|, n€ Z4}.
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ProoF. According to Theorem 3, (ii) implies (i). Thus suppose that (i) holds. Let
for every x€ D,[0, <) and for every g=(g,, ..., ¢4), such that O<|g| < e, be F x(1)=
=|gl=*x(qt), we recall that qt=(q,t;, ..., gqt,). It is easy to see that the random
elements Y,, defined by (8), satisfy the following equalities ) (r) F,,Z(t) and
Yy ()= FkN Z(t). Moreover, the map (¢, x)—~ F,x is jointly continuous, so that (1)

implies (ii) by the following Lemma, which is a d-dimensional version of Lemma 10

Lemma. Let (S, d) be a complete separable metric space. For q=(qy, ..., qa)
with O<|g|<es, let F,: S—+S be such that

F,x is jointly continuous;
F,F,= Fy,
where, for n=(my, ..., ), qu=(q,7y, ..., qany). Let Z be a random element of S
such that F, (Z) 2. u (stably). Then Fiy (Z) 2. u for any random field {N,, n€ Z¢}
satisfying ( &) with the norming sequence {|k,|, n€ Z%}.

Taking into account Theorem 1 and Theorems 2 and 4, we see that it is possible
to weaken condition (2) on {N,, n€ Z?} to condition ( A), at the cost of strengthening
the conditions on {Y,, n€Z%}. On the other hand even in the case d=1 (cf. [1]
or [8]) the condition (A) is the weakest possible condition on {N,, n€Z¢} under
which useful random indices limit theorems may be obtained, without imposing con-
ditions on the interdependence between {Y,,n€Z and {N,,n€Z%. Thus Theo-
rem 4, from this point of view, is the best result possible. Furthermore one can prove
that Theorem 4 remains unchanged if the range is restricted from Dy[0, =) to D4[0, 1].
Thus, for example, from Theorem 4 we get the following extensions of some results
presented in [6], [9] and [5].

Let {X,,n€Z% be arandom field. For each n€Z¢ let F, be the o-field gene-
rated by {X,:n£k}.

Theorem 5. Let {X,,ncZ% be a stationary, ergodic random field for which
E(X,|F,)=0, whenever m=n, with probability 1 and for which EX}=1. If, for
1€ T,[0, 1] (d-fold Cartesian product of [0, 1),

Y.() =(n)72 3 X,,

k=nt
then Yy 2+ W, in D,[0,1], as n—o= for every set {N,, nEZ‘} of Z%-valued ran-
dom variables statisfying (A) with k,=|n|, n€Z%, where W is the d-parameter Wiener
process.

Proor. By Theorem 1 [5] ¥,-2~ W, in D,[0, 1], as n—ce. Furthermore by
adaptation, to multivariate time, of the proof of Theorem 1 [4] (cf. also Remark 4

[4]) one can prove that Y,-Z+ W (mixing) as n— . Thus Theorem 5 follows from
Theorem 4 with n=(n,, ..., ny), k,=(n,, ..., n).

We remark that if |N,|/|n] = 1, as n— oo, where 1 is a positive random variable,
then (A) holds.

Theorem 6. Let {X,,, ncZ% be a family of mdependenr random variables with
zero means and finite variances. Assume, for each n=(ny, ..., ny), EX}=b® b3 ...6{D,
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max b{"”/B{")—~0, as n—ee, and for every &¢>0
lﬁrid 1=si=n
|B,| 7t 3 EXZI(| Xl = ¢|B,|"®) >0 as n - e,
k=n

where B{" = 3 b{" and B,=(BS?, ..., B\Y). If, for every

i=1
P= (rl'l bt Id)ef‘d[{]s ]]! Bn(() == (Bl?l)(rl)) it Bfl?(‘d))
BP(t) =max{1 =0:B{’ = ,BY}, B =0, 1=i=d,
Z,() =BT 3 X)

=B,(1)

then Zy =~ W, in D40, 1), as n—<= for every set {N,,n€Z% of Z-valued ran-
dom variables satisfying ( &) with k,=|B,|, n€Z-.

Proor By a straightforward adaptation of Theorem 5 [6] we can prove that
Z, -2+ W (mixing). Hence Theorem 6 follows from Theorem 4 with k,=(BS?, ..., B®).
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